Impact of System and Diagnostic Errors on Medical Litigation Outcomes: Machine Learning-Based Prediction Models

被引:3
作者
Yamamoto, Norio [1 ,2 ,3 ]
Sukegawa, Shintaro [4 ]
Watari, Takashi [5 ,6 ,7 ]
机构
[1] Okayama Univ, Grad Sch Med Dent & Pharmaceut Sci, Dept Epidemiol, Okayama 7008558, Japan
[2] Miyamoto Orthoped Hosp, Dept Orthoped Surg, Okayama 7738236, Japan
[3] Systemat Review Workshop Peer Support Grp SRWS PS, Osaka 5410043, Japan
[4] Kagawa Prefectural Cent Hosp, Dept Oral & Maxillofacial Surg, Takamatsu, Kagawa 7608557, Japan
[5] Shimane Univ Hosp, Gen Med Ctr, Izumo, Shimane 6938501, Japan
[6] Univ Michigan Hlth Syst, Div Hosp Med, Ann Arbor, MI 48105 USA
[7] VA Ann Arbor Healthcare Syst, Med Serv, Ann Arbor, MI 48105 USA
关键词
medical malpractice claims; litigation; diagnostic error; medical error; system error; machine learning; prediction model; MALPRACTICE CLAIMS;
D O I
10.3390/healthcare10050892
中图分类号
R19 [保健组织与事业(卫生事业管理)];
学科分类号
摘要
No prediction models using use conventional logistic models and machine learning exist for medical litigation outcomes involving medical doctors. Using a logistic model and three machine learning models, such as decision tree, random forest, and light-gradient boosting machine (LightGBM), we evaluated the prediction ability for litigation outcomes among medical litigation in Japan. The prediction model with LightGBM had a good predictive ability, with an area under the curve of 0.894 (95% CI; 0.893-0.895) in all patients' data. When evaluating the feature importance using the SHApley Additive exPlanation (SHAP) value, the system error was the most significant predictive factor in all clinical settings for medical doctors' loss in lawsuits. The other predictive factors were diagnostic error in outpatient settings, facility size in inpatients, and procedures or surgery settings. Our prediction model is useful for estimating medical litigation outcomes.
引用
收藏
页数:11
相关论文
共 34 条
  • [1] Malpractice Litigation Following Traumatic Fracture
    Ahmed, Shaan A.
    DeFroda, Steven E.
    Naqvi, Syed J.
    Eltorai, Adam E. M.
    Hartnett, Davis
    Ruddell, Jack H.
    Born, Christopher T.
    Daniels, Alan H.
    [J]. JOURNAL OF BONE AND JOINT SURGERY-AMERICAN VOLUME, 2019, 101 (07)
  • [2] [Anonymous], WHAT IS DIAGNOSTIC E
  • [3] SmcHD1, containing a structural-maintenance-of-chromosomes hinge domain, has a critical role in X inactivation
    Blewitt, Marnie E.
    Gendrel, Anne-Valerie
    Pang, Zhenyi
    Sparrow, Duncan B.
    Whitelaw, Nadia
    Craig, Jeffrey M.
    Apedaile, Anwyn
    Hilton, Douglas J.
    Dunwoodie, Sally L.
    Brockdorff, Neil
    Kay, Graham F.
    Whitelaw, Emma
    [J]. NATURE GENETICS, 2008, 40 (05) : 663 - 669
  • [4] Bors-Koefoed R, 1998, J Matern Fetal Med, V7, P124, DOI 10.1002/(SICI)1520-6661(199805/06)7:3<124::AID-MFM5>3.0.CO
  • [5] 2-M
  • [6] Incidence, nature and impact of error in surgery
    Bosma, E.
    Veen, E. J.
    Roukema, J. A.
    [J]. BRITISH JOURNAL OF SURGERY, 2011, 98 (11) : 1654 - 1659
  • [7] Breiman L., 2001, Machine Learning, V45, P5
  • [8] A systematic review shows no performance benefit of machine learning over logistic regression for clinical prediction models
    Christodoulou, Evangelia
    Ma, Jie
    Collins, Gary S.
    Steyerberg, Ewout W.
    Verbakel, Jan Y.
    Van Calster, Ben
    [J]. JOURNAL OF CLINICAL EPIDEMIOLOGY, 2019, 110 : 12 - 22
  • [9] Collins GS, 2015, ANN INTERN MED, V162, P55, DOI [10.7326/M14-0697, 10.1136/bmj.g7594, 10.1016/j.jclinepi.2014.11.010, 10.1038/bjc.2014.639, 10.1002/bjs.9736, 10.1016/j.eururo.2014.11.025, 10.1186/s12916-014-0241-z, 10.7326/M14-0698]
  • [10] COX DR, 1958, J R STAT SOC B, V20, P215