Blow-up and non-extinction for a nonlocal parabolic equation with logarithmic nonlinearity

被引:7
作者
Yan, Lijun [1 ]
Yang, Zuodong [2 ]
机构
[1] Nanjing Normal Univ, Sch Math Sci, Inst Math, Nanjing, Jiangsu, Peoples R China
[2] Nanjing Normal Univ, Sch Teacher Educ, Nanjing, Jiangsu, Peoples R China
来源
BOUNDARY VALUE PROBLEMS | 2018年
基金
中国国家自然科学基金;
关键词
Blow-up; Non-extinction; Nonlocal parabolic equation; NEUMANN BOUNDARY-CONDITIONS; SEMILINEAR HEAT-EQUATION; LIOUVILLE-TYPE THEOREMS; P-LAPLACE EQUATION; SUPERLINEAR PROBLEMS; CRITICAL EXPONENTS; SINGULARITY;
D O I
10.1186/s13661-018-1042-7
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This paper is devoted to studying a nonlocal parabolic equation with logarithmic nonlinearity u log vertical bar u vertical bar - f(Omega) u log vertical bar u vertical bar dx in a bounded domain, subject to homogeneous Neumann boundary value condition. By using the logarithmic Sobolev inequality and energy estimate methods, we get the results under appropriate conditions on blow-up and non-extinction of the solutions, which extend some recent results.
引用
收藏
页数:11
相关论文
共 22 条
[1]   Global blow-up for a semilinear heat equation on a subspace [J].
Budd, C. J. ;
Dold, J. W. ;
Galaktionov, V. A. .
PROCEEDINGS OF THE ROYAL SOCIETY OF EDINBURGH SECTION A-MATHEMATICS, 2015, 145 (05) :893-923
[2]   Global existence and non-extinction of solutions to a fourth-order parabolic equation [J].
Cao, Yang ;
Liu, Conghui .
APPLIED MATHEMATICS LETTERS, 2016, 61 :20-25
[3]   A semilinear parabolic problem with variable reaction on a general domain [J].
Castillo, Ricardo ;
Loayza, Miguel .
COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2017, 74 (03) :351-359
[4]   Global solution and blow-up of a semilinear heat equation with logarithmic nonlinearity [J].
Chen, Hua ;
Luo, Peng ;
Liu, Gongwei .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2015, 422 (01) :84-98
[5]   The role of critical exponents in blow-up theorems: The sequel [J].
Deng, K ;
Levine, HA .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2000, 243 (01) :85-126
[6]   A Gamma-convergence argument for the blow-up of a non-local semilinear parabolic equation with Neumann boundary conditions [J].
El Soufi, A. ;
Jazar, M. ;
Monneau, R. .
ANNALES DE L INSTITUT HENRI POINCARE-ANALYSE NON LINEAIRE, 2007, 24 (01) :17-39
[7]   LOGARITHMIC SOBOLEV INEQUALITIES [J].
GROSS, L .
AMERICAN JOURNAL OF MATHEMATICS, 1975, 97 (04) :1061-1083
[8]   Non-extinction of solutions to a fast diffusive p-Laplace equation with Neumann boundary conditions [J].
Guo, Bin ;
Gao, Wenjie .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2015, 422 (02) :1527-1531
[9]  
Hu B., 1995, Rend. Circ. Mat. Palermo., V44, P479, DOI [10.1007/bf02844682, DOI 10.1007/BF02844682]
[10]   THE ROLE OF CRITICAL EXPONENTS IN BLOWUP THEOREMS [J].
LEVINE, HA .
SIAM REVIEW, 1990, 32 (02) :262-288