A proximal point method for difference of convex functions in multi-objective optimization with application to group dynamic problems

被引:10
作者
Bento, Glaydston de Carvalho [1 ]
Barbosa Bitar, Sandro Dimy [2 ]
da Cruz Neto, Joao Xavier [3 ]
Soubeyran, Antoine [4 ,5 ]
de Oliveira Souza, Joao Carlos [3 ]
机构
[1] Univ Fed Goias, IME, Goiania, Go, Brazil
[2] Univ Fed Amazonas, ICE, Manaus, Amazonas, Brazil
[3] Univ Fed Piaui, CCN, DM, Teresina, PI, Brazil
[4] Aix Marseille Univ, Aix Marseille Sch Econ, CNRS, Aix En Provence, France
[5] Aix Marseille Univ, Aix Marseille Sch Econ, EHESS, Aix En Provence, France
关键词
Multi-objective programming; Proximal point method; DC function; Variational rationality; Behavioral sciences; OPTIMALITY CONDITIONS; VECTOR OPTIMIZATION; ALGORITHM; CONVERGENCE; MINIMIZATION; DUALITY;
D O I
10.1007/s10589-019-00139-0
中图分类号
C93 [管理学]; O22 [运筹学];
学科分类号
070105 ; 12 ; 1201 ; 1202 ; 120202 ;
摘要
We consider the constrained multi-objective optimization problem of finding Pareto critical points of difference of convex functions. The new approach proposed by Bento et al. (SIAM J Optim 28:1104-1120, 2018) to study the convergence of the proximal point method is applied. Our method minimizes at each iteration a convex approximation instead of the (non-convex) objective function constrained to a possibly non-convex set which assures the vector improving process. The motivation comes from the famous Group Dynamic problem in Behavioral Sciences where, at each step, a group of (possible badly informed) agents tries to increase his joint payoff, in order to be able to increase the payoff of each of them. In this way, at each step, this ascent process guarantees the stability of the group. Some encouraging preliminary numerical results are reported.
引用
收藏
页码:263 / 290
页数:28
相关论文
共 66 条
[1]  
[Anonymous], 2004, HDB ORG CHANGE INNOV
[2]  
[Anonymous], 1998, ACTA MATH VIETNAM
[3]   A scalarization proximal point method for quasiconvex multiobjective minimization [J].
Apolinario, H. C. F. ;
Quiroz, E. A. Papa ;
Oliveira, P. R. .
JOURNAL OF GLOBAL OPTIMIZATION, 2016, 64 (01) :79-96
[4]   On difference convexity of locally Lipschitz functions [J].
Bacak, Miroslav ;
Borwein, Jonathan M. .
OPTIMIZATION, 2011, 60 (8-9) :961-978
[5]   A SUBGRADIENT METHOD FOR VECTOR OPTIMIZATION PROBLEMS [J].
Bello Cruz, J. Y. .
SIAM JOURNAL ON OPTIMIZATION, 2013, 23 (04) :2169-2182
[6]   THE PROXIMAL POINT METHOD FOR LOCALLY LIPSCHITZ FUNCTIONS IN MULTIOBJECTIVE OPTIMIZATION WITH APPLICATION TO THE COMPROMISE PROBLEM [J].
Bento, G. C. ;
Cruz Neto, J. X. ;
Lopez, G. ;
Soubeyran, A. ;
Souza, J. C. O. .
SIAM JOURNAL ON OPTIMIZATION, 2018, 28 (02) :1104-1120
[7]   A Generalized Inexact Proximal Point Method for Nonsmooth Functions that Satisfies Kurdyka Lojasiewicz Inequality [J].
Bento, G. C. ;
Soubeyran, A. .
SET-VALUED AND VARIATIONAL ANALYSIS, 2015, 23 (03) :501-517
[8]   Generalized Inexact Proximal Algorithms: Routine's Formation with Resistance to Change, Following Worthwhile Changes [J].
Bento, G. C. ;
Soubeyran, A. .
JOURNAL OF OPTIMIZATION THEORY AND APPLICATIONS, 2015, 166 (01) :172-187
[9]   A Proximal Point-Type Method for Multicriteria Optimization [J].
Bento, G. C. ;
Cruz Neto, J. X. ;
Soubeyran, A. .
SET-VALUED AND VARIATIONAL ANALYSIS, 2014, 22 (03) :557-573
[10]   The self regulation problem as an inexact steepest descent method for multicriteria optimization [J].
Bento, G. C. ;
Cruz Neto, J. X. ;
Oliveira, P. R. ;
Soubeyran, A. .
EUROPEAN JOURNAL OF OPERATIONAL RESEARCH, 2014, 235 (03) :494-502