FAST IDEAL CUBING IN IMAGINARY QUADRATIC NUMBER AND FUNCTION FIELDS

被引:4
作者
Imbert, Laurent [1 ,2 ]
Jacobson, Michael J., Jr. [3 ]
Schmidt, Arthur [3 ]
机构
[1] Univ Calgary, Dept Math & Stat, CNRS, PIMS, Calgary, AB T2N 1N4, Canada
[2] Univ Montpellier 2, CNRS, LIRMM, F-34095 Montpellier, France
[3] Univ Calgary, Dept Comp Sci, Calgary, AB T2N 1N4, Canada
关键词
Quadratic fields; quadratic function fields; hyperelliptic curves; ideal arithmetic; double base number systems; CURVES; SYSTEM;
D O I
10.3934/amc.2010.4.237
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
We present algorithms for computing the cube of an ideal in an imaginary quadratic number field or function field. In addition to a version that computes a non-reduced output,we present a variation based on Shanks' NUCOMP algorithm that computes a reduced output and keeps the sizes of the intermediate operands small. Extensive numerical results are included demonstrating that in many cases our formulas,when combined with double base chains using binary and ternary exponents,lead to faster exponentiation
引用
收藏
页码:237 / 260
页数:24
相关论文
共 19 条
  • [1] [Anonymous], 2007, Binary Quadratic Forms
  • [2] EFFICIENT REDUCTION OF LARGE DIVISORS ON HYPERELLIPTIC CURVES
    Avanzi, Roberto
    Jacobson, Michael J., Jr.
    Scheidler, Renate
    [J]. ADVANCES IN MATHEMATICS OF COMMUNICATIONS, 2010, 4 (02) : 261 - 279
  • [3] Berthé V, 2009, DISCRETE MATH THEOR, V11, P153
  • [4] CANTOR DG, 1987, MATH COMPUT, V48, P95, DOI 10.1090/S0025-5718-1987-0866101-0
  • [5] Dimitrov V, 2008, MATH COMPUT, V77, P1075, DOI 10.1090/S0025-5718-07-02048-0
  • [6] DOCHE C, 2006, PROGR CRYPTOLOGY IND, P267
  • [7] DOCHE C, 2006, HDB ELLIPTIC HYPEREL, P267
  • [8] Gaudry P, 2006, MATH COMPUT, V76, P475
  • [9] Jacobson MJ, 2007, ADV MATH COMMUN, V1, P197
  • [10] Jacobson M.J., 2007, ADV CODING THEORY CR, P201