Remark on uniqueness of mild solutions to the Navier-Stokes equations

被引:28
作者
Miura, H [1 ]
机构
[1] Tohoku Univ, Math Inst, Sendai, Miyagi 9808578, Japan
关键词
Navier-Stokes; uniqueness; mild solution; bmo(-1);
D O I
10.1016/j.jfa.2004.07.007
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We investigate a limiting uniqueness criterion to the Navier-Stokes equations. We prove that the mild solution is unique under the class C([0, T); bmo(-1))boolean ANDL(loc)(infinity)((0, T); L-infinity), where bmo(-1) is the "critical" space including L-n. As an application of uniqueness theorem, we also consider the local well-posedness of Navier-Stokes equations in bmo(-1). (C) 2004 Elsevier Inc. All rights reserved.
引用
收藏
页码:110 / 129
页数:20
相关论文
共 16 条
[1]   On the stability of global solutions to Navier-Stokes equations in the space [J].
Auscher, P ;
Dubois, S ;
Tchamitchian, P .
JOURNAL DE MATHEMATIQUES PURES ET APPLIQUEES, 2004, 83 (06) :673-697
[2]   Functional calculus on BMO and related spaces [J].
Bourdaud, G ;
Lanza de Cristoforis, M ;
Sickel, W .
JOURNAL OF FUNCTIONAL ANALYSIS, 2002, 189 (02) :515-538
[3]   GLOBAL-SOLUTIONS OF 2-DIMENSIONAL NAVIER-STOKES AND EULER EQUATIONS - REMARKS [J].
BREZIS, H .
ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 1994, 128 (04) :359-360
[4]  
Chemin JY, 1999, J ANAL MATH, V77, P27, DOI 10.1007/BF02791256
[5]   ON THE NAVIER-STOKES INITIAL VALUE PROBLEM .1. [J].
FUJITA, H ;
KATO, T .
ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 1964, 16 (04) :269-315
[6]  
Furioli G, 2000, REV MAT IBEROAM, V16, P605
[7]   On global infinite energy solutions to the Navier-Stokes equations in two dimensions [J].
Gallagher, I ;
Planchon, F .
ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 2002, 161 (04) :307-337
[8]   SOLUTIONS IN LR OF THE NAVIER-STOKES INITIAL-VALUE PROBLEM [J].
GIGA, Y ;
MIYAKAWA, T .
ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 1985, 89 (03) :267-281
[10]   Well-posedness for the Navier-Stokes equations [J].
Koch, H ;
Tataru, D .
ADVANCES IN MATHEMATICS, 2001, 157 (01) :22-35