AN ALGORITHM TO CONSTRUCT SUBSOLUTIONS OF CONVEX OPTIMAL CONTROL PROBLEMS

被引:0
作者
Bet, Gianmarco [1 ]
Fischer, Markus [2 ]
机构
[1] Univ Florence, Dept Math & Comp Sci Ulisse Dini, I-50134 Florence, Italy
[2] Univ Padua, Dept Math Tullio Levi Civita, I-35121 Padua, Italy
关键词
deterministic/stochastic optimal control; Markov decision process; dynamic programming; discrete-time subsolution; STOCHASTIC-CONTROL PROBLEMS; SIMULATION; BSDES;
D O I
10.1137/21M1402005
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
We propose an algorithm that produces a nondecreasing sequence of subsolutions for a class of optimal control problems distinguished by the property that the associated Bellman operators preserve convexity. In addition to a theoretical discussion and proofs of convergence, numerical experiments are presented to illustrate the feasibility of the method.
引用
收藏
页码:2902 / 2926
页数:25
相关论文
共 31 条
[1]   CasADi: a software framework for nonlinear optimization and optimal control [J].
Andersson, Joel A. E. ;
Gillis, Joris ;
Horn, Greg ;
Rawlings, James B. ;
Diehl, Moritz .
MATHEMATICAL PROGRAMMING COMPUTATION, 2019, 11 (01) :1-36
[2]  
[Anonymous], 1996, Discrete Time Markov Control Processes
[3]   Deep Neural Networks Algorithms for Stochastic Control Problems on Finite Horizon: Numerical Applications [J].
Bachouch, Achref ;
Hure, Come ;
Langrene, Nicolas ;
Huyen Pham .
METHODOLOGY AND COMPUTING IN APPLIED PROBABILITY, 2022, 24 (01) :143-178
[4]   Error bounds for monotone approximation schemes for parabolic Hamilton-Jacobi-Bellman equations [J].
Barles, Guy ;
Jakobsen, Espen R. .
MATHEMATICS OF COMPUTATION, 2007, 76 (260) :1861-1893
[5]   REGRESSION METHODS FOR STOCHASTIC CONTROL PROBLEMS AND THEIR CONVERGENCE ANALYSIS [J].
Belomestny, Denis ;
Kolodko, Anastasia ;
Schoenmakers, John .
SIAM JOURNAL ON CONTROL AND OPTIMIZATION, 2010, 48 (05) :3562-3588
[6]  
BERTSEKAS D., 1996, Stochastic Optimal Control: The Discrete-Time Case
[7]  
Bertsekas D., 2015, Convex Optimization Algorithms
[8]   CONJUGATE CONVEX FUNCTIONS IN OPTIMAL STOCHASTIC CONTROL [J].
BISMUT, JM .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 1973, 44 (02) :384-404
[9]   SIMULATION OF BSDES BY WIENER CHAOS EXPANSION [J].
Briand, Philippe ;
Labart, Celine .
ANNALS OF APPLIED PROBABILITY, 2014, 24 (03) :1129-1171
[10]   On some neural network architectures that can represent viscosity solutions of certain high dimensional Hamilton-Jacobi partial differential equations [J].
Darbon, Jerome ;
Meng, Tingwei .
JOURNAL OF COMPUTATIONAL PHYSICS, 2021, 425