A lattice Gas Model for Generic One-Dimensional Hamiltonian Systems

被引:5
作者
Schmidt, J. [1 ,2 ]
Schutz, G. M. [3 ]
van Beijeren, H. [4 ]
机构
[1] Bonacci GmbH, Robert Koch Str 8, D-50937 Cologne, Germany
[2] Univ Cologne, Inst Theoret Phys, Zulpicher Str 77, D-50937 Cologne, Germany
[3] Forschungszentrum Julich, Inst Biol Informat Proc 5, D-52425 Julich, Germany
[4] Univ Utrecht, Inst Theoret Phys, Leuvenlaan 4, NL-3584 CE Utrecht, Netherlands
关键词
UNIVERSALITY; SUPERDIFFUSION;
D O I
10.1007/s10955-021-02709-1
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We present a three-lane exclusion process that exhibits the same universal fluctuation pattern as generic one-dimensional Hamiltonian dynamics with short-range interactions, viz., with two sound modes in the Kardar-Parisi-Zhang (KPZ) universality class (with dynamical exponent z = 3/2 and symmetric Prahofer-Spohn scaling function) and a superdiffusive heat mode with dynamical exponent z = 5/3 and symmetric Levy scaling function. The lattice gas model is amenable to efficient numerical simulation. Our main findings, obtained from dynamical Monte-Carlo simulation, are: (i) The frequently observed numerical asymmetry of the sound modes is a finite time effect. (ii) The mode-coupling calculation of the scale factor for the 5/3-Levy-mode gives at least the right order of magnitude. (iii) There are significant diffusive corrections which are non-universal.
引用
收藏
页数:24
相关论文
共 18 条
[1]   3/4-Fractional Superdiffusion in a System of Harmonic Oscillators Perturbed by a Conservative Noise [J].
Bernardin, Cedric ;
Goncalves, Patricia ;
Jara, Milton .
ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 2016, 220 (02) :505-542
[2]   Dynamics of coupled modes for sliding particles on a fluctuating landscape [J].
Chakraborty, Shauri ;
Chatterjee, Sakuntala ;
Barma, Mustansir .
PHYSICAL REVIEW E, 2019, 100 (04)
[3]   Kardar-Parisi-Zhang universality of the Nagel-Schreckenberg model [J].
de Gier, Jan ;
Schadschneider, Andreas ;
Schmidt, Johannes ;
Schuetz, Gunter M. .
PHYSICAL REVIEW E, 2019, 100 (05)
[4]   UNIVERSALITY CLASS OF INTERFACE GROWTH WITH REFLECTION SYMMETRY [J].
DEVILLARD, P ;
SPOHN, H .
JOURNAL OF STATISTICAL PHYSICS, 1992, 66 (3-4) :1089-1099
[5]   Current Symmetries for Particle Systems with Several Conservation Laws [J].
Grisi, Rafael M. ;
Schuetz, Gunter M. .
JOURNAL OF STATISTICAL PHYSICS, 2011, 145 (06) :1499-1512
[6]  
Halpin-Healy T, 2015, J STAT PHYS, V160, P794, DOI 10.1007/s10955-015-1282-1
[7]   A violation of universality in anomalous Fourier's law [J].
Hurtado, Pablo I. ;
Garrido, Pedro L. .
SCIENTIFIC REPORTS, 2016, 6
[8]   Conformal Invariance in Driven Diffusive Systems at High Currents [J].
Karevski, D. ;
Schuetz, G. M. .
PHYSICAL REVIEW LETTERS, 2017, 118 (03)
[9]   Logarithmic Superdiffusion in Two Dimensional Driven Lattice Gases [J].
Krug, J. ;
Neiss, R. A. ;
Schadschneider, A. ;
Schmidt, J. .
JOURNAL OF STATISTICAL PHYSICS, 2018, 172 (02) :493-504
[10]  
Lepri S, 2016, LECT NOTES PHYS, V921, P1, DOI 10.1007/978-3-319-29261-8