Factors That Control the Formation of Dendrites and Other Morphologies on Lithium Metal Anodes

被引:131
作者
Frenck, Louise [1 ,2 ]
Sethi, Gurmukh K. [2 ,3 ]
Maslyn, Jacqueline A. [1 ,2 ]
Balsara, Nitash P. [1 ,2 ,4 ]
机构
[1] Univ Calif Berkeley, Dept Chem & Biomol Engn, Berkeley, CA 94720 USA
[2] Lawrence Berkeley Natl Lab, Mat Sci Div, Berkeley, CA 94720 USA
[3] Univ Calif Berkeley, Dept Mat Sci & Engn, Berkeley, CA 94720 USA
[4] Lawrence Berkeley Natl Lab, JCESR, Berkeley, CA 94720 USA
基金
美国国家科学基金会;
关键词
dendrite; lithium metal; electrolytes; limiting current; rechargeable batteries; BLOCK-COPOLYMER ELECTROLYTE; IN-SITU; PROPYLENE CARBONATE; TRANSFERENCE NUMBERS; IONIC-CONDUCTIVITY; POLYMER ELECTROLYTE; GROWTH; STATE; MECHANISMS; DEPOSITION;
D O I
10.3389/fenrg.2019.00115
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
Lithium metal is a promising anode material for next-generation rechargeable batteries, but non-uniform electrodeposition of lithium is a significant barrier. These non-uniform deposits are often referred to as lithium "dendrites," although their morphologies can vary. We have surveyed the literature on lithium electrodeposition through three classes of electrolytes: liquids, polymers and inorganic solids. We find that the non-uniform deposits can be grouped into six classes: whiskers, moss, dendrites, globules, trees, and cracks. These deposits were obtained in a variety of cell geometries using both unidirectional deposition and cell cycling. The main result of the study is a figure where the morphology of electrodeposited lithium is plotted as a function of two variables: shear modulus of the electrolyte and current density normalized by the limiting current density. We show that specific morphologies are confined to contiguous regions on this two-dimensional plot.
引用
收藏
页数:11
相关论文
共 75 条
[1]   FABRICATION OF INGAAS STRAINED QUANTUM-WIRE STRUCTURES USING SELECTIVE-AREA METAL-ORGANIC CHEMICAL-VAPOR-DEPOSITION GROWTH [J].
ARAKAWA, T ;
TSUKAMOTO, S ;
NAGAMUNE, Y ;
NISHIOKA, M ;
LEE, JH ;
ARAKAWA, Y .
JAPANESE JOURNAL OF APPLIED PHYSICS PART 2-LETTERS & EXPRESS LETTERS, 1993, 32 (10A) :L1377-L1379
[2]   A short review of failure mechanisms of lithium metal and lithiated graphite anodes in liquid electrolyte solutions [J].
Aurbach, D ;
Zinigrad, E ;
Cohen, Y ;
Teller, H .
SOLID STATE IONICS, 2002, 148 (3-4) :405-416
[3]   IDENTIFICATION OF SURFACE-FILMS FORMED ON LITHIUM IN PROPYLENE CARBONATE SOLUTIONS [J].
AURBACH, D ;
DAROUX, ML ;
FAGUY, PW ;
YEAGER, E .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 1987, 134 (07) :1611-1620
[4]   Factors which limit the cycle life of rechargeable lithium (metal) batteries [J].
Aurbach, D ;
Zinigrad, E ;
Teller, H ;
Dan, P .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2000, 147 (04) :1274-1279
[5]   Transition of lithium growth mechanisms in liquid electrolytes [J].
Bai, Peng ;
Li, Ju ;
Brushett, Fikile R. ;
Bazant, Martin Z. .
ENERGY & ENVIRONMENTAL SCIENCE, 2016, 9 (10) :3221-3229
[6]   Comparing the Energy Content of Batteries, Fuels, and Materials [J].
Balsara, Nitash P. ;
Newman, John .
JOURNAL OF CHEMICAL EDUCATION, 2013, 90 (04) :446-452
[7]   Effect of Initial State of Lithium on the Propensity for Dendrite Formation: A Theoretical Study [J].
Barai, Pallab ;
Higa, Kenneth ;
Srinivasan, Venkat .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2017, 164 (02) :A180-A189
[8]   Multi-Scale Mechanical Behavior of the Li3PS4 Solid-Phase Electrolyte [J].
Baranowski, Lauryn L. ;
Heveran, Chelsea M. ;
Ferguson, Virginia L. ;
Stoldt, Conrad R. .
ACS APPLIED MATERIALS & INTERFACES, 2016, 8 (43) :29573-29579
[9]  
Barton J. L, 1961, P ROY SOC LOND A MAT, V268, P485
[10]   HIGH-ENERGY DENSITY LITHIUM CELLS .1. ELECTROLYTES AND ANODES [J].
BESENHARD, JO ;
EICHINGER, G .
JOURNAL OF ELECTROANALYTICAL CHEMISTRY, 1976, 68 (01) :1-18