First-principles derivation and properties of density-functional average-atom models

被引:15
作者
Callow, T. J. [1 ,2 ]
Hansen, S. B. [3 ]
Kraisler, E. [4 ,5 ]
Cangi, A. [1 ,2 ]
机构
[1] Ctr Adv Syst Understanding CASUS, D-02826 Gorlitz, Germany
[2] Helmholtz Zentrum Dresden Rossendorf, D-01328 Dresden, Germany
[3] Sandia Natl Labs, Albuquerque, NM 87185 USA
[4] Hebrew Univ Jerusalem, Fritz Haber Ctr Mol Dynam, IL-9091401 Jerusalem, Israel
[5] Hebrew Univ Jerusalem, Inst Chem, IL-9091401 Jerusalem, Israel
来源
PHYSICAL REVIEW RESEARCH | 2022年 / 4卷 / 02期
基金
芬兰科学院;
关键词
EQUATION-OF-STATE; SELF-INTERACTION CORRECTION; KOHN-SHAM ORBITALS; CORRELATION POTENTIALS; IONIZATION-ENERGY; THOMAS-FERMI; ELECTRON-GAS; EXCHANGE; PLASMAS; TEMPERATURE;
D O I
10.1103/PhysRevResearch.4.023055
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Finite-temperature Kohn-Sham density functional theory (KS-DFT) is a widely-used method in warm dense matter (WDM) simulations and diagnostics. Unfortunately, full KS-DFT-molecular dynamics models scale unfavourably with temperature and there remains uncertainty regarding the performance of existing approximate exchange-correlation (XC) functionals under WDM conditions. Of particular concern is the expected explicit dependence of the XC functional on temperature, which is absent from most approximations. Average-atom (AA) models, which significantly reduce the computational cost of KS-DFT calculations, have therefore become an integral part of WDM modeling. In this paper, we present a derivation of a first-principles AA model from the fully-interacting many-body Hamiltonian, carefully analyzing the assumptions made and terms neglected in this reduction. We explore the impact of different choices within this model-such as boundary conditions and XC functionals-on common properties in WDM, for example equation-of-state data, ionization degree and the behavior of the frontier energy levels. Furthermore, drawing upon insights from ground-state KS-DFT, we discuss the likely sources of error in KS-AA models and possible strategies for mitigating such errors.
引用
收藏
页数:27
相关论文
共 205 条
[1]   Exact Factorization of the Time-Dependent Electron-Nuclear Wave Function [J].
Abedi, Ali ;
Maitra, Neepa T. ;
Gross, E. K. U. .
PHYSICAL REVIEW LETTERS, 2010, 105 (12)
[2]   First-principles calculation of transport coefficients [J].
Alfè, D ;
Gillan, MJ .
PHYSICAL REVIEW LETTERS, 1998, 81 (23) :5161-5164
[3]   Solar neutrinos [J].
Altmann, MF ;
Mössbauer, RL ;
Oberauer, LJN .
REPORTS ON PROGRESS IN PHYSICS, 2001, 64 (01) :97-146
[4]  
[Anonymous], KNOWN ALSO WIGNER SE
[5]  
[Anonymous], 2009, Basic Research Needs for High Energy Density Laboratory Physics
[6]   Higher ionization energies of atoms in density-functional theory [J].
Argaman, Uri ;
Makov, Guy ;
Kraisler, Eli .
PHYSICAL REVIEW A, 2013, 88 (04)
[7]  
Atzeni S., 2004, The Physics of Inertial Fusion: BeamPlasma Interaction, Hydrodynamics, Hot Dense Matter
[8]   Electronic-structure calculations for nonisothermal warm dense matter [J].
Bekx, John Jasper ;
Son, Sang-Kil ;
Ziaja, Beata ;
Santra, Robin .
PHYSICAL REVIEW RESEARCH, 2020, 2 (03)
[9]   Carbon ionization at gigabar pressures: An ab initio perspective on astrophysical high-density plasmas [J].
Bethkenhagen, Mandy ;
Witte, Bastian B. L. ;
Schoerner, Maximilian ;
Roepke, Gerd ;
Doeppner, Tilo ;
Kraus, Dominik ;
Glenzer, Siegfried H. ;
Sterne, Philip A. ;
Redmer, Ronald .
PHYSICAL REVIEW RESEARCH, 2020, 2 (02)
[10]  
Betti R, 2016, NAT PHYS, V12, P435, DOI [10.1038/NPHYS3736, 10.1038/nphys3736]