Xanthophyll cycle pigments and water-water cycle in transgenic rice with decreased amounts of ribulose-1,5-bisphosphate carboxylase and the wild-type rice grown under different N levels

被引:17
作者
Ushio, A [1 ]
Makino, A [1 ]
Yokota, S [1 ]
Hirotsu, N [1 ]
Mae, T [1 ]
机构
[1] Tohoku Univ, Grad Sch Agr Sci, Dept Appl Plant Sci, Sendai, Miyagi 9818555, Japan
关键词
chlorophyll fluorescence; gas exchange (leaf); N-deficiency; rbcS antisense gene; Rubisco;
D O I
10.1080/00380768.2003.10409982
中图分类号
Q94 [植物学];
学科分类号
071001 ;
摘要
Chlorophyll (Chl) fluorescence, gas exchange rates, the amounts of xanthophyll cycle pigments, and the activities of several antioxidant enzymes including superoxide dismutase, ascorbate peroxidase, glutathione reductase, and monodehydroascorbate radical reductase were examined in the leaves of wild-type rice (Oryza sativa L.) and rbcS antisense plants grown under different N levels. The decrease in the CO2 assimilation capacity by the introduction of the rbcS antisense gene and N deficiency was closely related to the decrease in the quantum yield of photosystem (PS) 11 (phiPSII) and the enhancement of non-photochemical quenching (NTQ). No differences in the relationships between the electron transport rates from Chl fluorescence and those from gas exchange were found between the wild-type and rbcS antisense plants and there were no differences in the activities of all the antioxidant enzymes per unit of Chl examined. Although a remarkable increase in NPQ was found for the rbcS antisense and N-deficient wild-type plants, the amounts of the total xanthophyll cycle pigments per unit of Chl remained constant in all the plants. NPQ was highly correlated with only the ratio of antheraxanthin plus zeaxanthin to total xanthophyll cycle pigments. In addition, this ratio was negatively correlated with Rubisco content, irrespective of the genotype and N treatment. The results indicate that the low capacity for CO2 assimilation and photorespiration by the introduction of the rbcS antisense gene and N deficiency did not affect the electron flow in the water-water cycle but enhanced the deepoxidation state of the xanthophyll. cycle pigments.
引用
收藏
页码:77 / 83
页数:7
相关论文
共 37 条
[1]   COPPER ENZYMES IN ISOLATED CHLOROPLASTS - POLYPHENOLOXIDASE IN BETA-VULGARIS [J].
ARNON, DI .
PLANT PHYSIOLOGY, 1949, 24 (01) :1-15
[2]   The water-water cycle in chloroplasts: Scavenging of active oxygens and dissipation of excess photons [J].
Asada, K .
ANNUAL REVIEW OF PLANT PHYSIOLOGY AND PLANT MOLECULAR BIOLOGY, 1999, 50 :601-639
[3]   ASSAY AND INHIBITORS OF SPINACH SUPEROXIDE-DISMUTASE [J].
ASADA, K ;
TAKAHASHI, M ;
NAGATE, M .
AGRICULTURAL AND BIOLOGICAL CHEMISTRY, 1974, 38 (02) :471-473
[4]   VIOLAXANTHIN CYCLE PIGMENT CONTENTS IN POTATO AND TOBACCO PLANTS WITH GENETICALLY REDUCED PHOTOSYNTHETIC CAPACITY [J].
BILGER, W ;
FISAHN, J ;
BRUMMET, W ;
KOSSMANN, J ;
WILLMITZER, L .
PLANT PHYSIOLOGY, 1995, 108 (04) :1479-1486
[5]   Molecular cloning of violaxanthin de-epoxidase from romaine lettuce and expression in Escherichia coli [J].
Bugos, RC ;
Yamamoto, HY .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1996, 93 (13) :6320-6325
[6]   CAROTENOIDS AND PHOTOPROTECTION IN PLANTS - A ROLE FOR THE XANTHOPHYLL ZEAXANTHIN [J].
DEMMIGADAMS, B .
BIOCHIMICA ET BIOPHYSICA ACTA, 1990, 1020 (01) :1-24
[7]   The role of xanthophyll cycle carotenoids in the protection of photosynthesis [J].
DemmigAdams, B ;
Adams, WW .
TRENDS IN PLANT SCIENCE, 1996, 1 (01) :21-26
[8]   XANTHOPHYLL CYCLE-DEPENDENT ENERGY-DISSIPATION AND FLEXIBLE PHOTOSYSTEM-II EFFICIENCY IN PLANTS ACCLIMATED TO LIGHT STRESS [J].
DEMMIGADAMS, B ;
ADAMS, WW ;
LOGAN, BA ;
VERHOEVEN, AS .
AUSTRALIAN JOURNAL OF PLANT PHYSIOLOGY, 1995, 22 (02) :249-260
[9]   THE RELATIONSHIP BETWEEN THE QUANTUM YIELD OF PHOTOSYNTHETIC ELECTRON-TRANSPORT AND QUENCHING OF CHLOROPHYLL FLUORESCENCE [J].
GENTY, B ;
BRIANTAIS, JM ;
BAKER, NR .
BIOCHIMICA ET BIOPHYSICA ACTA, 1989, 990 (01) :87-92
[10]  
Gilmore AM, 1997, PHYSIOL PLANTARUM, V99, P197, DOI 10.1034/j.1399-3054.1997.990127.x