Reduced graphene oxide modified melamine formaldehyde (rGO@MF) superhydrophobic sponge for efficient oil-water separation

被引:57
作者
Saha, Partha [1 ]
Dashairya, Love [1 ]
机构
[1] Natl Inst Technol, Dept Ceram Engn, Rourkela 769008, Odisha, India
关键词
Superhydrophobicity; Melamine formaldehyde sponge; Reduced graphene oxide; Contact angle; Oil-water separation; Recyclability; COATED POLYURETHANE SPONGE; HIGHLY EFFICIENT; SPILL CLEANUP; ELASTIC PROPERTIES; REMOVAL; FOAM; ABSORPTION; REDUCTION; ABSORBENT; SORBENTS;
D O I
10.1007/s10934-018-0560-0
中图分类号
O69 [应用化学];
学科分类号
081704 ;
摘要
The present work describes the fabrication of superhydrophobic and superoleophilic reduced graphene oxide coated melamine formaldehyde (rGO@MF) based sponge for efficient removal of oils and organic solvents from oil-water mixture. The rGO@MF sponge was synthesized using commercially available melamine sponge, GO solution, and hydrazine hydrate by hydrothermal treatment. Phase and microstructural analysis show that as-synthesized rGO@MF possesses ultrathin coating of rGO sheets onto porous MF sponge. Moreover, as-prepared rGO@MF sponge exhibited contact angle (CA) similar to 162 degrees and 0 degrees on a sessile water and oil droplet, respectively. Oil water separation test shows that rGO@MF sponge can remove similar to 90-120 times oils by its weight. Moreover, repeated sorption-mechanical squeezing test of oil-water mixture sheds light that rGO@MF sponge is fully reusable and similar to 40-50% oil can be recovered after 10 cycles.
引用
收藏
页码:1475 / 1488
页数:14
相关论文
共 72 条
  • [1] Fast and fully-scalable synthesis of reduced graphene oxide
    Abdolhosseinzadeh, Sina
    Asgharzadeh, Hamed
    Kim, Hyoung Seop
    [J]. SCIENTIFIC REPORTS, 2015, 5
  • [2] Porous materials for oil spill cleanup: A review of synthesis and absorbing properties
    Adebajo, MO
    Frost, RL
    Kloprogge, JT
    Carmody, O
    Kokot, S
    [J]. JOURNAL OF POROUS MATERIALS, 2003, 10 (03) : 159 - 170
  • [3] Engineered nanomaterials for water treatment and remediation: Costs, benefits, and applicability
    Adeleye, Adeyemi S.
    Conway, Jon R.
    Garner, Kendra
    Huang, Yuxiong
    Su, Yiming
    Keller, Arturo A.
    [J]. CHEMICAL ENGINEERING JOURNAL, 2016, 286 : 640 - 662
  • [4] Amico S.C., 2010, Matéria (Rio J.), V15, P355, DOI 10.1590/S1517-70762010000200037
  • [5] Spongy Graphene as a Highly Efficient and Recyclable Sorbent for Oils and Organic Solvents
    Bi, Hengchang
    Xie, Xiao
    Yin, Kuibo
    Zhou, Yilong
    Wan, Shu
    He, Longbing
    Xu, Feng
    Banhart, Florian
    Sun, Litao
    Ruoff, Rodney S.
    [J]. ADVANCED FUNCTIONAL MATERIALS, 2012, 22 (21) : 4421 - 4425
  • [6] Gulf of Mexico Oil Blowout Increases Risks to Globally Threatened Species
    Campagna, Claudio
    Short, Frederick T.
    Polidoro, Beth A.
    McManus, Roger
    Collette, Bruce B.
    Pilcher, Nicolas J.
    de Mitcheson, Yvonne Sadovy
    Stuart, Simon N.
    Carpenter, Kent E.
    [J]. BIOSCIENCE, 2011, 61 (05) : 393 - 397
  • [7] Polyurethane sponge functionalized with superhydrophobic nanodiamond particles for efficient oil/water separation
    Cao, Ning
    Yang, Bai
    Barras, Alexandre
    Szunerits, Sabine
    Boukherroub, Rabah
    [J]. CHEMICAL ENGINEERING JOURNAL, 2017, 307 : 319 - 325
  • [8] Graphene Oxide: Preparation, Functionalization, and Electrochemical Applications
    Chen, Da
    Feng, Hongbin
    Li, Jinghong
    [J]. CHEMICAL REVIEWS, 2012, 112 (11) : 6027 - 6053
  • [9] Facile synthesis of a two-tier hierarchical structured superhydrophobic-superoleophilic melamine sponge for rapid and efficient oil/water separation
    Chen, Jiucun
    You, Hui
    Xu, Liqun
    Li, Tianhao
    Jiang, Xianquan
    Li, Chang Ming
    [J]. JOURNAL OF COLLOID AND INTERFACE SCIENCE, 2017, 506 : 659 - 668
  • [10] Highly hydrophobic and ultralight graphene aerogel as high efficiency oil absorbent material
    Cheng, Yubo
    Xu, Pei
    Zeng, Wei
    Ling, Chenxi
    Zhao, Shuo
    Liao, Kin
    Sun, Yimin
    Zhou, Aijun
    [J]. JOURNAL OF ENVIRONMENTAL CHEMICAL ENGINEERING, 2017, 5 (02): : 1957 - 1963