Quantum collapse of dust shells in 2+1 gravity

被引:7
作者
Ortiz, L. [1 ]
Ryan, M. P., Jr. [1 ]
机构
[1] Univ Nacl Autonoma Mexico, Inst Ciencias Nucl, Mexico City 05249, DF, Mexico
关键词
D O I
10.1007/s10714-007-0458-7
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
This paper considers the quantum collapse of infinitesimally thin dust shells in 2 + 1 gravity. In 2 + 1 gravity a shell is no longer a sphere, but a ring of matter. The classical equation of motion of such shells in terms of variables defined on the shell has been considered by Peleg and Steif (Phys Rev D 51: 3992, 1995), using the 2 + 1 version of the original formulation of Israel (Nuovo Cimento B 44: 1, 1966), and Crisostomo and Olea ( Phys Rev D 69: 104023, 2004), using canonical methods. The minisuperspace quantum problem can be reduced to that of a harmonic oscillator in terms of the curvature radius of the shell, which allows us to use well-known methods to find the motion of coherent wave packets that give the quantum collapse of the shell. Classically, as the radius of the shell falls below a certain point, a horizon forms. In the quantum problem one can define various quantities that give "indications" of horizon formation. Without a proper definition of a "horizon" in quantum gravity, these can be nothing but indications.
引用
收藏
页码:1087 / 1107
页数:21
相关论文
共 17 条
[1]   BLACK-HOLE IN 3-DIMENSIONAL SPACETIME [J].
BANADOS, M ;
TEITELBOIM, C ;
ZANELLI, J .
PHYSICAL REVIEW LETTERS, 1992, 69 (13) :1849-1851
[2]   GEOMETRY OF THE 2+1 BLACK-HOLE [J].
BANADOS, M ;
HENNEAUX, M ;
TEITELBOIM, C ;
ZANELLI, J .
PHYSICAL REVIEW D, 1993, 48 (04) :1506-1525
[3]  
CARLIP S, 1998, QUANTUM GRAVITY 2 1
[4]   Quantum collapse of a small dust shell [J].
Corichi, A ;
Cruz-Pacheco, G ;
Minzoni, A ;
Padilla, P ;
Rosenbaum, M ;
Ryan, MP ;
Smyth, NF ;
Vukasinac, T .
PHYSICAL REVIEW D, 2002, 65 (06)
[5]   Hamiltonian treatment of the gravitational collapse of thin shells -: art. no. 104023 [J].
Crisóstomo, J ;
Olea, R .
PHYSICAL REVIEW D, 2004, 69 (10)
[6]  
Cruz G.J., UNPUB
[7]  
Cruz-Pacheco G, 2003, REV MEX FIS, V49, P122
[8]   QUANTUM-MECHANICS OF GRAVITATIONAL COLLAPSE [J].
HAJICEK, P .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1992, 150 (03) :545-559
[9]  
HAJICEK P, 1992, PHYS REV D, V46
[10]  
HAJICEK P, UNPUB