Pseudospectral Discretization of Nonlinear Delay Equations: New Prospects for Numerical Bifurcation Analysis

被引:50
作者
Breda, D. [1 ]
Diekmann, O. [2 ]
Gyllenberg, M. [3 ]
Scarabel, F. [3 ]
Vermiglio, R. [1 ]
机构
[1] Univ Udine, Dept Math & Comp Sci, Via Sci 206, I-33100 Udine, Italy
[2] Univ Utrecht, Dept Math, Budapestlaan 6,POB 80010, NL-3508 TA Utrecht, Netherlands
[3] Univ Helsinki, Dept Math & Stat, POB 68,Gustaf Hallstromin Katu 2b, FI-00014 Helsinki, Finland
基金
芬兰科学院;
关键词
delay differential equations; renewal equations; Volterra delay equations; physiologically structured populations; stability of equilibria; numerical bifurcation; pseudospectral method; DIFFERENTIAL EQUATIONS; CHARACTERISTIC ROOTS; STABILITY; APPROXIMATION; EIGENVALUES; OPERATORS;
D O I
10.1137/15M1040931
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We apply the pseudospectral discretization approach to nonlinear delay models described by delay differential equations, renewal equations, or systems of coupled renewal equations and delay differential equations. The aim is to derive ordinary differential equations and to investigate the stability and bifurcation of equilibria of the original model by available software packages for continuation and bifurcation for ordinary differential equations. Theoretical and numerical results confirm the effectiveness and the versatility of the approach, opening a new perspective for the bifurcation analysis of delay equations, in particular coupled renewal and delay differential equations.
引用
收藏
页码:1 / 23
页数:23
相关论文
共 36 条
[21]   Daphnia revisited: local stability and bifurcation theory for physiologically structured population models explained by way of an example [J].
Diekmann, Odo ;
Gyllenberg, Mats ;
Metz, J. A. J. ;
Nakaoka, Shinji ;
de Roos, Andre M. .
JOURNAL OF MATHEMATICAL BIOLOGY, 2010, 61 (02) :277-318
[22]  
Ford N. J., 1998, TECHNICAL REPORT
[23]  
Forde J. E., 2005, THESIS U MICHIGAN AN
[24]  
GOTTLIEB D, 1981, MATH COMPUT, V36, P107, DOI 10.1090/S0025-5718-1981-0595045-1
[25]  
Gottlieb D., 1984, SPECTRAL METHODS PAR
[26]  
Gottlieb D., 1977, P SIAM NSF CBMS PHIL, V26
[27]  
Hale J. K., 1993, AMS SERIES, V99
[28]   CIRCULAR CAUSAL SYSTEMS IN ECOLOGY [J].
HUTCHINSON, GE .
ANNALS OF THE NEW YORK ACADEMY OF SCIENCES, 1948, 50 (04) :221-246
[29]  
INSPERGER T., 2011, AMS SERIES, V178
[30]  
Kuznetsov Y. A., 1998, AMS SERIES, V112