Pseudospectral Discretization of Nonlinear Delay Equations: New Prospects for Numerical Bifurcation Analysis

被引:50
作者
Breda, D. [1 ]
Diekmann, O. [2 ]
Gyllenberg, M. [3 ]
Scarabel, F. [3 ]
Vermiglio, R. [1 ]
机构
[1] Univ Udine, Dept Math & Comp Sci, Via Sci 206, I-33100 Udine, Italy
[2] Univ Utrecht, Dept Math, Budapestlaan 6,POB 80010, NL-3508 TA Utrecht, Netherlands
[3] Univ Helsinki, Dept Math & Stat, POB 68,Gustaf Hallstromin Katu 2b, FI-00014 Helsinki, Finland
基金
芬兰科学院;
关键词
delay differential equations; renewal equations; Volterra delay equations; physiologically structured populations; stability of equilibria; numerical bifurcation; pseudospectral method; DIFFERENTIAL EQUATIONS; CHARACTERISTIC ROOTS; STABILITY; APPROXIMATION; EIGENVALUES; OPERATORS;
D O I
10.1137/15M1040931
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We apply the pseudospectral discretization approach to nonlinear delay models described by delay differential equations, renewal equations, or systems of coupled renewal equations and delay differential equations. The aim is to derive ordinary differential equations and to investigate the stability and bifurcation of equilibria of the original model by available software packages for continuation and bifurcation for ordinary differential equations. Theoretical and numerical results confirm the effectiveness and the versatility of the approach, opening a new perspective for the bifurcation analysis of delay equations, in particular coupled renewal and delay differential equations.
引用
收藏
页码:1 / 23
页数:23
相关论文
共 36 条
[1]  
[Anonymous], 2009, SURV TUTOR APPL MATH
[2]  
[Anonymous], 1995, Applied Mathematical Sciences
[3]  
[Anonymous], 1999, GRAD TEXTS MATH
[4]   An alternative formulation for a delayed logistic equation [J].
Arino, J ;
Wang, L ;
Wolkowicz, GSK .
JOURNAL OF THEORETICAL BIOLOGY, 2006, 241 (01) :109-119
[5]   DISCRETE OR DISTRIBUTED DELAY? EFFECTS ON STABILITY OF POPULATION GROWTH [J].
Beretta, Edoardo ;
Breda, Dimitri .
MATHEMATICAL BIOSCIENCES AND ENGINEERING, 2016, 13 (01) :19-41
[6]   Pseudospectral approximation of eigenvalues of derivative operators with non-local boundary conditions [J].
Breda, D ;
Maset, S ;
Vermiglio, R .
APPLIED NUMERICAL MATHEMATICS, 2006, 56 (3-4) :318-331
[7]   Pseudospectral differencing methods for characteristic roots of delay differential equations [J].
Breda, D ;
Maset, S ;
Vermiglio, R .
SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2005, 27 (02) :482-495
[8]   COMPUTING THE EIGENVALUES OF REALISTIC DAPHNIA MODELS BY PSEUDOSPECTRAL METHODS [J].
Breda, D. ;
Getto, P. ;
Sanchez Sanz, J. ;
Vermiglio, R. .
SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2015, 37 (06) :A2607-A2629
[9]   APPROXIMATION OF EIGENVALUES OF EVOLUTION OPERATORS FOR LINEAR RETARDED FUNCTIONAL DIFFERENTIAL EQUATIONS [J].
Breda, D. ;
Maset, S. ;
Vermiglio, R. .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 2012, 50 (03) :1456-1483
[10]  
Breda D., 2015, STABILITY LINEAR DIF