Oscillation criteria for a class of second-order Emden-Fowler delay dynamic equations on time scales

被引:66
作者
Han, Zhenlai [1 ]
Sun, Shurong
Shi, Bao
机构
[1] Jinan Univ, Sch Sci, Shandong 250022, Peoples R China
[2] Naval Aeronaut Engn Inst, Inst Appl Math, Shandong 264001, Peoples R China
基金
中国国家自然科学基金; 美国国家科学基金会;
关键词
oscillation; second-order; delay dynamic equations; time scale;
D O I
10.1016/j.jmaa.2007.01.004
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
By means of Riccati transformation technique, we establish some new oscillation criteria for the secon-dorder Emden-Fowler delay dynamic equations x(Delta Delta)(t) + p(t)x(gamma) (tau(t)) = 0 on a time scale T; here gamma is a quotient of odd positive integers with p(t) real-valued positive rd-continuous functions defined on T. To the best of our knowledge nothing is known regarding the qualitative behavior of these equations on time scales. Our results in this paper not only extend the results given in [R.P. Agarwal, M. Bohner, S.H. Saker, Oscillation of second-order delay dynamic equations, Can. Appl. Math. Q 13 (1) (2005) 1-18] but also unify the oscillation of the second-order Emden-Fowler delay differential equation and the second-order Emden-Fowler delay difference equation. (c) 2007 Elsevier Inc. All rights reserved.
引用
收藏
页码:847 / 858
页数:12
相关论文
共 26 条
[1]   Oscillation criteria for second-order nonlinear neutral delay dynamic equations [J].
Agarwal, RP ;
O'Regan, D ;
Saker, SH .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2004, 300 (01) :203-217
[2]   Oscillation criteria for second-order retarded differential equations [J].
Agarwal, RP ;
Shieh, SL ;
Yeh, CC .
MATHEMATICAL AND COMPUTER MODELLING, 1997, 26 (04) :1-11
[3]  
AGARWAL RP, 2001, CAM TR MATH, V141, P1
[4]   Oscillation properties of an Emden-Fowler type equation on discrete time scales [J].
Akin-Bohner, E ;
Hoffacker, J .
JOURNAL OF DIFFERENCE EQUATIONS AND APPLICATIONS, 2003, 9 (06) :603-612
[5]   Solution properties on discrete time scales [J].
Akin-Bohner, E ;
Hoffacker, J .
JOURNAL OF DIFFERENCE EQUATIONS AND APPLICATIONS, 2003, 9 (01) :63-75
[6]  
AKINBOHNER E, IN PRESS ELECT T NUM
[7]  
[Anonymous], 2005, CAN APPL MATH Q
[8]   Oscillation of second order nonlinear dynamic equations on time scales [J].
Bohner, M ;
Saker, SH .
ROCKY MOUNTAIN JOURNAL OF MATHEMATICS, 2004, 34 (04) :1239-1254
[9]  
Bohner M., 2005, FAR E J APPL MATH, V18, P289
[10]  
Bohner M., 2003, Advances in Dynamic Equations on Time Scales: An Introduction with Applications, DOI DOI 10.1007/978-0-8176-8230-9