Orientation-Dispersed Apparent Axon Diameter via Multi-Stage Spherical Mean Optimization

被引:3
作者
Pizzolato, Marco [1 ]
Wassermann, Demian [2 ]
Deriche, Rachid [3 ]
Thiran, Jean-Philippe [1 ,4 ,5 ]
Fick, Rutger [6 ]
机构
[1] Ecole Polytech Fed Lausanne, Signal Proc Lab LTS5, Lausanne, Switzerland
[2] Univ Paris Saclay, INRIA, CEA, Parietal, Palaiseau, France
[3] Univ Cote dAzur, INRIA, Athena, Sophia Antipolis, France
[4] Univ Hosp Ctr CHUV, Lausanne, Switzerland
[5] Univ Lausanne UNIL, Lausanne, Switzerland
[6] TheraPanacea, Paris, France
来源
COMPUTATIONAL DIFFUSION MRI (CDMRI 2018) | 2019年
基金
瑞士国家科学基金会; 欧洲研究理事会;
关键词
Diffusion MRI; Axon diameter; Dispersion; Spherical mean; DIFFUSION; DENSITY;
D O I
10.1007/978-3-030-05831-9_8
中图分类号
R445 [影像诊断学];
学科分类号
100207 ;
摘要
The estimation of the apparent axon diameter (AAD) via diffusion MRI is affected by the incoherent alignment of single axons around its axon bundle direction, also known as orientational dispersion. The simultaneous estimation of AAD and dispersion is challenging and requires the optimization of many parameters at the same time. We propose to reduce the complexity of the estimation with an multi-stage approach, inspired to alternate convex search, that separates the estimation problem into simpler ones, thus avoiding the estimation of all the relevant model parameters at once. The method is composed of three optimization stages that are iterated, where we separately estimate the volume fractions, diffusivities, dispersion, and mean AAD, using a Cylinder and Zeppelin model. First, we use multi-shell data to estimate the undispersed axon micro-environment's signal fractions and diffusivities using the spherical mean technique; then, to account for dispersion, we use the obtained micro-environment parameters to estimate a Watson axon orientation distribution; finally, we use data acquired perpendicularly to the axon bundle direction to estimate the mean AAD and updated signal fractions, while fixing the previously estimated diffusivity and dispersion parameters. We use the estimated mean AAD to initiate the following iteration. We show that our approach converges to good estimates while being more efficient than optimizing all model parameters at once. We apply our method to ex-vivo spinal cord data, showing that including dispersion effects results in mean apparent axon diameter estimates that are closer to their measured histological values.
引用
收藏
页码:91 / 101
页数:11
相关论文
共 22 条
[1]  
Alexander D.C, 2008, MRM
[2]   Orientationally invariant indices of axon diameter and density from diffusion MRI [J].
Alexander, Daniel C. ;
Hubbard, Penny L. ;
Hall, Matt G. ;
Moore, Elizabeth A. ;
Ptito, Maurice ;
Parker, Geoff J. M. ;
Dyrby, Tim B. .
NEUROIMAGE, 2010, 52 (04) :1374-1389
[3]  
[Anonymous], NEUROIMAGE
[4]   AxCaliber: A method for measuring axon diameter distribution from diffusion MRI [J].
Assaf, Yaniv ;
Blumenfeld-Katzir, Tamar ;
Yovel, Yossi ;
Basser, Peter J. .
MAGNETIC RESONANCE IN MEDICINE, 2008, 59 (06) :1347-1354
[5]   Mesoscopic structure of neuronal tracts from time-dependent diffusion [J].
Burcaw, Lauren M. ;
Fieremans, Els ;
Novikov, Dmitry S. .
NEUROIMAGE, 2015, 114 :18-37
[6]   Accelerated Microstructure Imaging via Convex Optimization (AMICO) from diffusion MRI data [J].
Daducci, Alessandro ;
Canales-Rodriguez, Erick J. ;
Zhang, Hui ;
Dyrby, Tim B. ;
Alexander, Daniel C. ;
Thiran, Jean-Philippe .
NEUROIMAGE, 2015, 105 :32-44
[7]   Including diffusion time dependence in the extra-axonal space improves in vivo estimates of axonal diameter and density in human white matter [J].
De Santis, Silvia ;
Jones, Derek K. ;
Roebroeck, Alard .
NEUROIMAGE, 2016, 130 :91-103
[8]  
Duval T., 2016, Proceedings of the 24th Annual Meeting of ISMRM, P928
[9]   Microstructure Imaging of Crossing (MIX) White Matter Fibers from diffusion MRI [J].
Farooq, Hamza ;
Xu, Junqian ;
Nam, Jung Who ;
Keefe, Daniel F. ;
Yacoub, Essa ;
Georgiou, Tryphon ;
Lenglet, Christophe .
SCIENTIFIC REPORTS, 2016, 6
[10]  
Fick R, 2018, HBM