Hermite-Hadamard inequalities in fractional calculus defined using Mittag-Leffler kernels

被引:96
作者
Fernandez, Arran [1 ]
Mohammed, Pshtiwan [2 ]
机构
[1] Eastern Mediterranean Univ, Fac Arts & Sci, Dept Math, Via Mersin 10, Famagusta, Northern Cyprus, Turkey
[2] Univ Sulaimani, Coll Educ, Dept Math, Sulaimani, Kurdistan Regio, Iraq
关键词
Atangana-Baleanu fractional calculus; fractional calculus; Hermite-Hadamard inequality; integral inequalities; Mittag-Leffler function; Prabhakar fractional calculus; INTEGRAL-INEQUALITIES; DERIVATIVES;
D O I
10.1002/mma.6188
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We consider the Hermite-Hadamard inequality and related results on integral inequalities, in the context of fractional integrals and derivatives defined using Mittag-Leffler kernels, specifically the Atangana-Baleanu and Prabhakar models of fractional calculus.
引用
收藏
页码:8414 / 8431
页数:18
相关论文
共 41 条
[1]   Integration by parts and its applications of a new nonlocal fractional derivative with Mittag-Leffler nonsingular kernel [J].
Abdeljawad, Thabet ;
Baleanu, Dumitru .
JOURNAL OF NONLINEAR SCIENCES AND APPLICATIONS, 2017, 10 (03) :1098-1107
[2]  
AGARWAL P, 2016, J INEQUAL APPL 0419
[3]   Opial type inequalities involving Riemann-Liouville fractional derivatives of two functions with applications [J].
Anastassiou, George A. .
MATHEMATICAL AND COMPUTER MODELLING, 2008, 48 (3-4) :344-374
[4]  
Atangana A., 2017, FRACTIONAL OPERATORS
[5]   NEW FRACTIONAL DERIVATIVES WITH NON-LOCAL AND NON-SINGULAR KERNEL Theory and Application to Heat Transfer Model [J].
Atangana, Abdon ;
Baleanu, Dumitru .
THERMAL SCIENCE, 2016, 20 (02) :763-769
[6]   On some new properties of fractional derivatives with Mittag-Leffler kernel [J].
Baleanu, Dumitru ;
Fernandez, Arran .
COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2018, 59 :444-462
[7]   Ostrowski Type Inequalities Involving ψ-Hilfer Fractional Integrals [J].
Basci, Yasemin ;
Baleanu, Dumitru .
MATHEMATICS, 2019, 7 (09)
[8]   LINEAR MODELS OF DISSIPATION WHOSE Q IS ALMOST FREQUENCY INDEPENDENT-2 [J].
CAPUTO, M .
GEOPHYSICAL JOURNAL OF THE ROYAL ASTRONOMICAL SOCIETY, 1967, 13 (05) :529-&
[9]   Fractional integral inequalities and applications [J].
Denton, Z. ;
Vatsala, A. S. .
COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2010, 59 (03) :1087-1094
[10]   Numerical Computation of a Fractional Derivative with Non-Local and Non-Singular Kernel [J].
Djida, J. D. ;
Atangana, A. ;
Area, I. .
MATHEMATICAL MODELLING OF NATURAL PHENOMENA, 2017, 12 (03) :4-13