A recurrent TSK interval type-2 fuzzy neural networks control with online structure and parameter learning for mobile robot trajectory tracking

被引:20
作者
Bencherif, Aissa [1 ]
Chouireb, Fatima [1 ]
机构
[1] Univ Amar Telidji, Dept Elect, BP 37G, Laghouat, Algeria
关键词
Mobile robot; Trajectory tracking; Structure and parameter learning; Varied learning rates VLR; Recurrent type-2 fuzzy neural network; RTSKIT2FNN;
D O I
10.1007/s10489-019-01439-y
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
This paper focuses on the design of a recurrent Takagi-Sugeno-Kang interval type-2 fuzzy neural network RTSKIT2FNN for mobile robot trajectory tracking problem. The RTSKIT2FNN is incorporating the recurrent frame of internal-feedback loops into interval type-2 fuzzy neural network which uses simple interval type-2 fuzzy sets in the antecedent part and the Takagi-Sugeno-Kang (TSK) type in the consequent part of the fuzzy rule. The antecedent part forms a local internal feedback loop by feeding the membership function of each node in the fuzzification layer to itself. Initially, the rule base in the RTSKIT2FNN is empty, after that, all rules are generated by online structure learning, and all the parameters of the RTSKIT2FNN are updated online using gradient descent algorithm with varied learning rates VLR. Through experimental results, we demonstrate the effectiveness of the proposed RTSKIT2FNN for mobile robot control.
引用
收藏
页码:3881 / 3893
页数:13
相关论文
共 34 条
[1]   Type 2 Fuzzy Neural Structure for Identification and Control of Time-Varying Plants [J].
Abiyev, Rahib Hidayat ;
Kaynak, Okyay .
IEEE TRANSACTIONS ON INDUSTRIAL ELECTRONICS, 2010, 57 (12) :4147-4159
[2]  
[Anonymous], 2017, 2017 5 INT C ELECT E
[3]  
[Anonymous], 2015, 2015 4 INT C EL ENG
[4]  
[Anonymous], J ENG SCI TECHNOL RE
[5]  
[Anonymous], IEEE T CONTROL SYSTE
[6]   A new approach for dynamic fuzzy logic parameter tuning in Ant Colony Optimization and its application in fuzzy control of a mobile robot [J].
Castillo, Oscar ;
Neyoy, Hector ;
Soria, Jose ;
Melin, Patricia ;
Valdez, Fevrier .
APPLIED SOFT COMPUTING, 2015, 28 :150-159
[7]   A hybrid learning algorithm for a class of interval type-2 fuzzy neural networks [J].
Castro, Juan R. ;
Castillo, Oscar ;
Melin, Patricia ;
Rodriguez-Diaz, Antonio .
INFORMATION SCIENCES, 2009, 179 (13) :2175-2193
[8]   A hierarchical type-2 fuzzy logic control architecture for autonomous mobile robots [J].
Hagras, HA .
IEEE TRANSACTIONS ON FUZZY SYSTEMS, 2004, 12 (04) :524-539
[9]  
Hao YY, 2017, CHIN CONTR CONF, P4918, DOI 10.23919/ChiCC.2017.8028131
[10]   Adaptive Control of an Electrically Driven Nonholonomic Mobile Robot via Backstepping and Fuzzy Approach [J].
Hou, Zeng-Guang ;
Zou, An-Min ;
Cheng, Long ;
Tan, Min .
IEEE TRANSACTIONS ON CONTROL SYSTEMS TECHNOLOGY, 2009, 17 (04) :803-815