First exit time from a bounded interval for a certain class of additive functionals of Brownian motion

被引:7
作者
Lachal, A [1 ]
机构
[1] Inst Natl Sci Appl, Lab Math Appliquees Lyon, F-69621 Villeurbanne, France
关键词
first exit time; excursion process; Abel's integral equation; hypergeometric functions;
D O I
10.1023/A:1007810528683
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
Let (B-t)(t greater than or equal to 0) be standard Brownian motion starting at y, X-t = x + integral(0)(t) V(B-s) ds for x is an element of (a, b), with V(y) = y(gamma) if y greater than or equal to 0, V(y) = -K( -y)gamma if y less than or equal to 0, where gamma > 0 and K is a given positive constant. Set tau(ab) = inf{t > 0; X-t is not an element of (a, b)} and sigma(0) = inf{t > 0: B-t = 0}. In this paper we give several informations about the random variable z,b. We namely evaluate the moments of the random variables B-tau ab and B-tau ab (<^> sigma 0), and also show how to calculate the expectations E(tau(ab)(m)B(tau ab)(n)) and E((tau(ab) (<^>) (sigma 0))(m) B-tau ab(n) (<^>) (sigma 0)). Then, we explicitly determine the probability laws of the random variables B-tau ab and B-tau ab (<^>) (sigma 0) as well as the probability P{X-tau ab = a (or b)} by means of special functions.
引用
收藏
页码:733 / 775
页数:43
相关论文
共 31 条
[21]   1ST-PASSAGE DENSITIES OF A TWO-DIMENSIONAL PROCESS [J].
LEFEBVRE, M .
SIAM JOURNAL ON APPLIED MATHEMATICS, 1989, 49 (05) :1514-1523
[22]   EXIT SYSTEMS [J].
MAISONNEUVE, B .
ANNALS OF PROBABILITY, 1975, 3 (03) :399-411
[23]   EXACT SOLUTION TO THE MEAN EXIT TIME PROBLEM FOR FREE INERTIAL PROCESSES DRIVEN BY GAUSSIAN WHITE-NOISE [J].
MASOLIVER, J ;
PORRA, JM .
PHYSICAL REVIEW LETTERS, 1995, 75 (02) :189-192
[24]   SOME EIGENVALUE IDENTITIES FOR BROWNIAN-MOTION [J].
MCGILL, P .
MATHEMATICAL PROCEEDINGS OF THE CAMBRIDGE PHILOSOPHICAL SOCIETY, 1989, 105 :587-596
[25]  
McKean H. P., 1963, J MATH KYOTO U, V2, P227, DOI DOI 10.1215/KJM/1250524936
[26]  
Oberhettinger F., 1973, Tables of Laplace transforms
[27]  
Ray D., 1958, T AM MATH SOC, V89, P16
[28]  
Revuz D, 2013, Continuous martingales and Brownian motion, V293
[29]  
ROGERS LCG, 1984, LECT NOTES MATH, V1095, P187
[30]  
SAKALYUK KD, 1961, SOV MATH DOKL, V1, P332