coxphMIC: An R Package for Sparse Estimation of Cox Proportional Hazards Models via Approximated Information Criteria

被引:0
作者
Nabi, Razieh [1 ]
Su, Xiaogang [2 ]
机构
[1] Johns Hopkins Univ, Dept Comp Sci, Baltimore, MD 21218 USA
[2] Univ Texas El Paso, Dept Math Sci, El Paso, TX 79968 USA
来源
R JOURNAL | 2017年 / 9卷 / 01期
关键词
VARIABLE SELECTION; LASSO;
D O I
暂无
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
In this paper, we describe an R package named coxphMIC, which implements the sparse estimation method for Cox proportional hazards models via approximated information criterion (Su et al., 2016). The developed methodology is named MIC which stands for "Minimizing approximated Information Criteria". A reparameterization step is introduced to enforce sparsity while at the same time keeping the objective function smooth. As a result, MIC is computationally fast with a superior performance in sparse estimation. Furthermore, the reparameterization tactic yields an additional advantage in terms of circumventing post-selection inference (Leeb and Potscher, 2005). The MIC method and its R implementation are introduced and illustrated with the PBC data.
引用
收藏
页码:229 / 238
页数:10
相关论文
共 22 条
  • [1] NEW LOOK AT STATISTICAL-MODEL IDENTIFICATION
    AKAIKE, H
    [J]. IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 1974, AC19 (06) : 716 - 723
  • [2] [Anonymous], J STAT SOFTWARE
  • [3] [Anonymous], J STAT SOFTWARE
  • [4] [Anonymous], IEEE T AUTOMATIC CON
  • [5] [Anonymous], J COMPUTATIONAL GRAP
  • [6] [Anonymous], J STAT SOFTWARE
  • [7] [Anonymous], IEEE T AUTOMATIC CON
  • [8] [Anonymous], J COMPUTATIONAL GRAP
  • [9] [Anonymous], J STAT SOFT IN PRESS
  • [10] PARTIAL LIKELIHOOD
    COX, DR
    [J]. BIOMETRIKA, 1975, 62 (02) : 269 - 276