Research Progress towards Understanding the Unique Interfaces between Concentrated Electrolytes and Electrodes for Energy Storage Applications

被引:447
作者
Zheng, Jianming [2 ]
Lochala, Joshua A. [1 ]
Kwok, Alexander [1 ]
Deng, Zhiqun Daniel [2 ]
Xiao, Jie [1 ]
机构
[1] Univ Arkansas, Dept Chem & Biochem, Fayetteville, AR 72701 USA
[2] Pacific Northwest Natl Lab, Energy & Environm Directorate, 902 Battelle Blvd, Richland, WA 99354 USA
关键词
LITHIUM-SULFUR BATTERIES; LI-ION BATTERIES; NONAQUEOUS LI-O-2 BATTERIES; SUPERCONCENTRATED ELECTROLYTES; PROPYLENE CARBONATE; RECHARGEABLE BATTERIES; LIQUID ELECTROLYTE; ALUMINUM CORROSION; METAL BATTERIES; SURFACE MODIFICATION;
D O I
10.1002/advs.201700032
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
The electrolyte is an indispensable component in all electrochemical energy storage and conversion devices with batteries being a prime example. While most research efforts have been pursued on the materials side, the progress for the electrolyte is slow due to the decomposition of salts and solvents at low potentials, not to mention their complicated interactions with the electrode materials. The general properties of bulk electrolytes such as ionic conductivity, viscosity, and stability all affect the cell performance. However, for a specific electrochemical cell in which the cathode, anode, and electrolyte are optimized, it is the interface between the solid electrode and the liquid electrolyte, generally referred to as the solid electrolyte interphase (SEI), that dictates the rate of ion flow in the system. The commonly used electrolyte is within the range of 1-1.2 m based on the prior optimization experience, leaving the high concentration region insufficiently recognized. Recently, electrolytes with increased concentration (> 1.0 m) have received intensive attention due to quite a few interesting discoveries in cells containing concentrated electrolytes. The formation mechanism and the nature of the SEI layers derived from concentrated electrolytes could be fundamentally distinct from those of the traditional SEI and thus enable unusual functions that cannot be realized using regular electrolytes. In this article, we provide an overview on the recent progress of high concentration electrolytes in different battery chemistries. The experimentally observed phenomena and their underlying fundamental mechanisms are discussed. New insights and perspectives are proposed to inspire more revolutionary solutions to address the interfacial challenges.
引用
收藏
页数:19
相关论文
共 132 条
[1]   Liquid electrolyte based on lithium bis-fluorosulfonyl imide salt: Aluminum corrosion studies and lithium ion battery investigations [J].
Abouimrane, A. ;
Ding, J. ;
Davidson, I. J. .
JOURNAL OF POWER SOURCES, 2009, 189 (01) :693-696
[2]   Electrolyte-Directed Reactions of the Oxygen Electrode in Lithium-Air Batteries [J].
Abraham, K. M. .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2015, 162 (02) :A3021-A3031
[3]   A Lithium-Ion Sulfur Battery Based on a Carbon-Coated Lithium-Sulfide Cathode and an Electrodeposited Silicon-Based Anode [J].
Agostini, Marco ;
Hassoun, Jusef ;
Liu, Jun ;
Jeong, Moongook ;
Nara, Hiroki ;
Momma, Toshiyuki ;
Osaka, Tetsuya ;
Sun, Yang-Kook ;
Scrosati, Bruno .
ACS APPLIED MATERIALS & INTERFACES, 2014, 6 (14) :10924-10928
[4]   Advances of aqueous rechargeable lithium-ion battery: A review [J].
Alias, Nurhaswani ;
Mohamad, Ahmad Azmin .
JOURNAL OF POWER SOURCES, 2015, 274 :237-251
[5]   The state of understanding of the lithium-ion-battery graphite solid electrolyte interphase (SEI) and its relationship to formation cycling [J].
An, Seong Jin ;
Li, Jianlin ;
Daniel, Claus ;
Mohanty, Debasish ;
Nagpure, Shrikant ;
Wood, David L., III .
CARBON, 2016, 105 :52-76
[6]  
[Anonymous], 2016, NAT COMMUN
[7]   Building better batteries [J].
Armand, M. ;
Tarascon, J. -M. .
NATURE, 2008, 451 (7179) :652-657
[8]   On the Surface Chemical Aspects of Very High Energy Density, Rechargeable Li-Sulfur Batteries [J].
Aurbach, Doron ;
Pollak, Elad ;
Elazari, Ran ;
Salitra, Gregory ;
Kelley, C. Scordilis ;
Affinito, John .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2009, 156 (08) :A694-A702
[9]   New insights into the limiting parameters of the Li/S rechargeable cell [J].
Barchasz, Celine ;
Lepretre, Jean-Claude ;
Alloin, Fannie ;
Patoux, Sebastien .
JOURNAL OF POWER SOURCES, 2012, 199 :322-330
[10]   Sulfone-Based Electrolytes for Nonaqueous Li-O2 Batteries [J].
Barde, Fanny ;
Chen, Yuhui ;
Johnson, Lee ;
Schaltin, Stijn ;
Fransaer, Jan ;
Bruce, Peter G. .
JOURNAL OF PHYSICAL CHEMISTRY C, 2014, 118 (33) :18892-18898