Biparite entanglement and localization of one-particle states

被引:18
作者
Li, HB [1 ]
Wang, XG
Hu, BB
机构
[1] Hong Kong Baptist Univ, Dept Phys, Hong Kong, Hong Kong, Peoples R China
[2] Hong Kong Baptist Univ, Ctr Nonlinear Studies, Hong Kong, Hong Kong, Peoples R China
[3] Zhejiang Univ, Inst Modern Phys, Hangzhou 310027, Peoples R China
[4] Macquarie Univ, Dept Phys, N Ryde, NSW 2109, Australia
[5] Macquarie Univ, Australian Ctr Excellence Quantum Comp Technol, N Ryde, NSW 2109, Australia
[6] Univ Houston, Dept Phys, Houston, TX 77204 USA
来源
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL | 2004年 / 37卷 / 44期
关键词
D O I
10.1088/0305-4470/37/44/014
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We study bipartite entanglement in a general one-particle state, and find that the linear entropy, quantifying the bipartite entanglement, is directly connected to the participation ratio, characterizing the state localization. The more extended the state, the more entangled it is. We apply the general formalism to investigate ground-state and dynamical properties of entanglement in the one-dimensional Harper model.
引用
收藏
页码:10665 / 10672
页数:8
相关论文
共 28 条
[1]   Simulations of many-body Fermi systems on a universal quantum computer [J].
Abrams, DS ;
Lloyd, S .
PHYSICAL REVIEW LETTERS, 1997, 79 (13) :2586-2589
[2]   Natural thermal and magnetic entanglement in the 1D Heisenberg model [J].
Arnesen, MC ;
Bose, S ;
Vedral, V .
PHYSICAL REVIEW LETTERS, 2001, 87 (01)
[3]   FRACTAL AND DYNAMICAL PROPERTIES OF THE KICKED HARPER MODEL [J].
ARTUSO, R ;
CASATI, G ;
BORGONOVI, F ;
REBUZZINI, L ;
GUARNERI, I .
INTERNATIONAL JOURNAL OF MODERN PHYSICS B, 1994, 8 (03) :207-235
[4]   COMMUNICATION VIA ONE-PARTICLE AND 2-PARTICLE OPERATORS ON EINSTEIN-PODOLSKY-ROSEN STATES [J].
BENNETT, CH ;
WIESNER, SJ .
PHYSICAL REVIEW LETTERS, 1992, 69 (20) :2881-2884
[5]   TELEPORTING AN UNKNOWN QUANTUM STATE VIA DUAL CLASSICAL AND EINSTEIN-PODOLSKY-ROSEN CHANNELS [J].
BENNETT, CH ;
BRASSARD, G ;
CREPEAU, C ;
JOZSA, R ;
PERES, A ;
WOOTTERS, WK .
PHYSICAL REVIEW LETTERS, 1993, 70 (13) :1895-1899
[6]  
BRAVYI S, 2000, QUANTPH0003137
[7]   Distributed entanglement [J].
Coffman, V ;
Kundu, J ;
Wootters, WK .
PHYSICAL REVIEW A, 2000, 61 (05) :5
[8]   Three qubits can be entangled in two inequivalent ways [J].
Dur, W. ;
Vidal, G. ;
Cirac, J.I. .
Physical Review A - Atomic, Molecular, and Optical Physics, 2000, 62 (06) :062314-062311
[9]  
Dür W, 2001, PHYS REV A, V63, DOI 10.1103/PhysRevA.63.020303
[10]   QUANTUM CRYPTOGRAPHY BASED ON BELL THEOREM [J].
EKERT, AK .
PHYSICAL REVIEW LETTERS, 1991, 67 (06) :661-663