Distribution of dislocation source length and the size dependent yield strength in freestanding thin films

被引:50
作者
Shishvan, Siamak Soleymani [2 ]
Van der Giessen, Erik [1 ]
机构
[1] Univ Groningen, Dept Appl Phys, Zernike Inst Adv Mat, NL-9747 AG Groningen, Netherlands
[2] Univ Tehran, Dept Struct Engn, Tehran, Iran
关键词
Thin films; Discrete dislocation plasticity (DDP); Size effects; Plastic deformation; Frank-Read source; PLASTIC-DEFORMATION; STRESS; SIMULATIONS; STRAIN; BEHAVIOR; CU;
D O I
10.1016/j.jmps.2010.02.011
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
A method is proposed to estimate the size-dependent yield strength of columnar-grained freestanding thin films. The estimate relies on assuming a distribution of the size of Frank-Read sources, which is then translated into a log-normal distribution of the source strength, depending on film thickness, grain size and theoretical strength of the material, augmented with a single fit parameter. Two-dimensional discrete dislocation plasticity (DDP) simulations are carried out for two sets of Cu films and the fit parameter is determined from independent experiments. Subsequent DDP predictions of the stress-strain curves in comparison with the corresponding experimental data show excellent agreement of initial yield strength and hardening rate for films of varying film thickness and grain size. Having thus demonstrated the power of the proposed strength distribution, it is shown that the mode of this distribution governs the most effective source strength. This is then used to suggest a method to estimate the yield strength of thin films as a function of film thickness and grain size. Simple maps are presented that are in very good agreement with recent experimental results for Cu thin films. (C) 2010 Elsevier Ltd. All rights reserved.
引用
收藏
页码:678 / 695
页数:18
相关论文
共 37 条
[1]   Enabling strain hardening simulations with dislocation dynamics [J].
Arsenlis, A. ;
Cai, W. ;
Tang, M. ;
Rhee, M. ;
Oppelstrup, T. ;
Hommes, G. ;
Pierce, T. G. ;
Bulatov, V. V. .
MODELLING AND SIMULATION IN MATERIALS SCIENCE AND ENGINEERING, 2007, 15 (06) :553-595
[2]   Overview no. 130 - Size effects in materials due to microstructural and dimensional constraints: A comparative review [J].
Arzt, E .
ACTA MATERIALIA, 1998, 46 (16) :5611-5626
[3]   Discrete dislocation plasticity analysis of the grain size dependence of the flow strength of polycrystals [J].
Balint, D. S. ;
Deshpande, V. S. ;
Needleman, A. ;
Van der Giessen, E. .
INTERNATIONAL JOURNAL OF PLASTICITY, 2008, 24 (12) :2149-2172
[4]   Parallel glide: unexpected dislocation motion parallel to the substrate in ultrathin copper films [J].
Balk, TJ ;
Dehm, G ;
Arzt, E .
ACTA MATERIALIA, 2003, 51 (15) :4471-4485
[5]   An analysis of exhaustion hardening in micron-scale plasticity [J].
Benzerga, A. A. .
INTERNATIONAL JOURNAL OF PLASTICITY, 2008, 24 (07) :1128-1157
[6]   Incorporating three-dimensional mechanisms into two-dimensional dislocation dynamics [J].
Benzerga, AA ;
Bréchet, Y ;
Needleman, A ;
Van der Giessen, E .
MODELLING AND SIMULATION IN MATERIALS SCIENCE AND ENGINEERING, 2004, 12 (01) :159-196
[7]   SELF-STRESS OF DISLOCATIONS + SHAPE OF EXTENDED NODES [J].
BROWN, LM .
PHILOSOPHICAL MAGAZINE, 1964, 10 (105) :441-&
[8]   A non-singular continuum theory of dislocations [J].
Cai, W ;
Arsenlis, A ;
Weinberger, CR ;
Bulatov, VV .
JOURNAL OF THE MECHANICS AND PHYSICS OF SOLIDS, 2006, 54 (03) :561-587
[9]   Strength and tension/compression asymmetry in nanostructured and ultrafine-grain metals [J].
Cheng, S ;
Spencer, JA ;
Milligan, WW .
ACTA MATERIALIA, 2003, 51 (15) :4505-4518
[10]   INTERACTION OF DISLOCATIONS WITH AN APPLIED STRESS IN ANISOTROPIC CRYSTALS [J].
DEWIT, G ;
KOEHLER, JS .
PHYSICAL REVIEW, 1959, 116 (05) :1113-1120