On the Hyers-Ulam Stability of First-Order Impulsive Delay Differential Equations

被引:43
作者
Zada, Akbar [1 ]
Faisal, Shah [1 ]
Li, Yongjin [2 ]
机构
[1] Univ Peshawar, Dept Math, Peshawar 25000, Pakistan
[2] Sun Yat Sen Univ, Dept Math, Guangzhou 510275, Guangdong, Peoples R China
基金
中国国家自然科学基金;
关键词
D O I
10.1155/2016/8164978
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This paper proves the Hyers-Ulam stability and the Hyers-Ulam-Rassias stability of nonlinear first-order ordinary differential equation with single constant delay and finite impulses on a compact interval. Our approach uses abstract Gronwall lemma together with integral inequality of Gronwall type for piecewise continuous functions.
引用
收藏
页数:6
相关论文
共 37 条
[1]   On some inequalities and stability results related to the exponential function [J].
Alsina, C ;
Ger, R .
JOURNAL OF INEQUALITIES AND APPLICATIONS, 1998, 2 (04) :373-380
[2]  
Aoki T., 1950, J MATH SOC JAPAN, V2, P64, DOI [10.2969/jmsj/00210064, DOI 10.2969/JMSJ/00210064]
[3]  
Bainov D.D., 1989, Systems with Impulse Effect
[4]  
BAINOV DD, 1989, DOKL BOLG AKAD NAUK, V42, P29
[5]   On approximate solutions of some delayed fractional differential equations [J].
Brzdek, Janusz ;
Eghbali, Nasrin .
APPLIED MATHEMATICS LETTERS, 2016, 54 :31-35
[6]   DEPENDENCE UPON INITIAL CONDITIONS AND PARAMETER OF SOLUTIONS OF IMPULSIVE DIFFERENTIAL-EQUATIONS WITH VARIABLE STRUCTURE [J].
DISHLIEV, AB ;
BAINOV, DD .
INTERNATIONAL JOURNAL OF THEORETICAL PHYSICS, 1990, 29 (06) :655-675
[7]   STABILITY RESULTS OF RANDOM IMPULSIVE SEMILINEAR DIFFERENTIAL EQUATIONS [J].
Gowrisankar, M. ;
Mohankumar, P. ;
Vinodkumar, A. .
ACTA MATHEMATICA SCIENTIA, 2014, 34 (04) :1055-1071
[8]   Hyers-Ulam stability of delay differential equations of first order [J].
Huang, Jinghao ;
Li, Yongjin .
MATHEMATISCHE NACHRICHTEN, 2016, 289 (01) :60-66
[9]   Hyers-Ulam stability of linear functional differential equations [J].
Huang, Jinghao ;
Li, Yongjin .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2015, 426 (02) :1192-1200
[10]  
Huang JH, 2014, ELECTRON J DIFFER EQ