Integrated solid-state nanopore devices for third generation DNA sequencing

被引:12
作者
Wu GenSheng [1 ]
Zhang Yin [1 ]
Si Wei [1 ]
Sha JingJie [1 ]
Liu Lei [1 ]
Chen YunFei [1 ]
机构
[1] Southeast Univ, Jiangsu Key Lab Design & Manufacture Micronano Bi, Nanjing 211189, Jiangsu, Peoples R China
基金
中国国家自然科学基金;
关键词
DNA sequencing; solid-state nanopore; spatial resolution; integrated sensors; SINGLE-STRANDED-DNA; CONDUCTANCE MEASUREMENTS; NUCLEIC-ACIDS; LAYER MOS2; GRAPHENE; TRANSLOCATION; MOLECULES; TRANSPORT; PLATFORM; SENSORS;
D O I
10.1007/s11431-014-5644-8
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Third generation DNA sequencing relies on monitoring the ionic current blockage during the DNA molecule's threading through a nanoscale pore. It is still really tough to attain the single base discrimination on a DNA strand by merely analyzing the ionic current due to speedy DNA translocation and low spatial resolution. More integrated configurations are pursued to present versatile comparative dissimilarities of the four bases by enhancing the spatial resolution within a DNA molecule translocation event, such as transverse tunneling current, local potential change, and capacitance oriented voltage resonance. In this mini review, the insight is provided into the status quo on several functionalized techniques and methodologies for DNA sequencing and furthermore concluding remark and outlook are presented.
引用
收藏
页码:1925 / 1935
页数:11
相关论文
共 91 条
[71]   Fabrication of solid-state nanopores with single-nanometre precision [J].
Storm, AJ ;
Chen, JH ;
Ling, XS ;
Zandbergen, HW ;
Dekker, C .
NATURE MATERIALS, 2003, 2 (08) :537-540
[72]   Silicon nitride nanosieve membrane [J].
Tong, HD ;
Jansen, HV ;
Gadgil, VJ ;
Bostan, CG ;
Berenschot, E ;
van Rijn, CJM ;
Elwenspoek, M .
NANO LETTERS, 2004, 4 (02) :283-287
[73]  
Traversi F, 2013, NAT NANOTECHNOL, V8, P939, DOI [10.1038/nnano.2013.240, 10.1038/NNANO.2013.240]
[74]  
Tsutsui M, 2010, NAT NANOTECHNOL, V5, P286, DOI [10.1038/nnano.2010.42, 10.1038/NNANO.2010.42]
[75]   Integration of solid-state nanopores in a 0.5 μm CMOS foundry process [J].
Uddin, A. ;
Yemenicioglu, S. ;
Chen, C-H ;
Corigliano, E. ;
Milaninia, K. ;
Theogarajan, L. .
NANOTECHNOLOGY, 2013, 24 (15)
[76]   Stacked Graphene-Al2O3 Nanopore Sensors for Sensitive Detection of DNA and DNA-Protein Complexes [J].
Venkatesan, Bala Murali ;
Estrada, David ;
Banerjee, Shouvik ;
Jin, Xiaozhong ;
Dorgan, Vincent E. ;
Bae, Myung-Ho ;
Aluru, Narayana R. ;
Pop, Eric ;
Bashir, Rashid .
ACS NANO, 2012, 6 (01) :441-450
[77]  
Venkatesan BM, 2011, NAT NANOTECHNOL, V6, P615, DOI [10.1038/nnano.2011.129, 10.1038/NNANO.2011.129]
[78]   Highly Sensitive, Mechanically Stable Nanopore Sensors for DNA Analysis [J].
Venkatesan, Bala Murali ;
Dorvel, Brian ;
Yemenicioglu, Sukru ;
Watkins, Nicholas ;
Petrov, Ivan ;
Bashir, Rashid .
ADVANCED MATERIALS, 2009, 21 (27) :2771-+
[79]   Differentiation of Short, Single-Stranded DNA Homopolymers in Solid-State Nanopores [J].
Venta, Kimberly ;
Shemer, Gabriel ;
Puster, Matthew ;
Rodriguez-Manzo, Julio A. ;
Balan, Adrian ;
Rosenstein, Jacob K. ;
Shepard, Ken ;
Drndic, Marija .
ACS NANO, 2013, 7 (05) :4629-4636
[80]  
Wang QH, 2012, NAT NANOTECHNOL, V7, P699, DOI [10.1038/nnano.2012.193, 10.1038/NNANO.2012.193]