Cost Function Selection for a Graph-Based Segmentation in OCT Retinal Images

被引:0
作者
Gonzalez, A. [1 ]
Penedo, M. G. [1 ]
Vazquez, S. G. [1 ]
Novo, J. [1 ]
Charlon, P. [2 ]
机构
[1] Univ A Coruna, Dept Comp Sci, VARPA Grp, La Coruna, Spain
[2] Inst Ophthalmol Gomez Ulla, Santiago De Compostela, Spain
来源
COMPUTER AIDED SYSTEMS THEORY, PT II | 2013年 / 8112卷
关键词
image segmentation; OCT retinal image; cost function; minimum closed set; graph;
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
This paper is based on a methodology for segmentation of the main retinal layers in Optical Coherence Tomography (OCT) images. The input image is transformed into a geometric graph and the layers to be detected will be given by its minimum-cost closed set. The main problem in this method is the selection of the appropriate cost functions associated to the graph, because of the variety of anomalies that images from patients might have.
引用
收藏
页码:125 / 132
页数:8
相关论文
共 5 条
  • [1] Albrecht P., 2012, MULTIPLE SCLEROSIS J
  • [2] Haeker M., 2007, P SPIE MED IM, V6512
  • [3] Optimal surface segmentation in volumetric images - A graph-theoretic approach
    Li, K
    Wu, XD
    Chen, DZ
    Sonka, M
    [J]. IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2006, 28 (01) : 119 - 134
  • [4] High-Resolution Optical Coherence Tomography Retinal Imaging: A Case Series Illustrating Potential and Limitations
    Puzyeyeva, Olena
    Lam, Wai Ching
    Flanagan, John G.
    Brent, Michael H.
    Devenyi, Robert G.
    Mandelcorn, Mark S.
    Wong, Tien
    Hudson, Christopher
    [J]. JOURNAL OF OPHTHALMOLOGY, 2011, 2011
  • [5] Sánchez-Tocino H, 2002, INVEST OPHTH VIS SCI, V43, P1588