ON THE JACQUET CONJECTURE ON THE LOCAL CONVERSE PROBLEM FOR p-ADIC GLN

被引:8
作者
Adrian, Moshe [1 ]
Liu, Baiying [2 ]
Stevens, Shaun [3 ]
Xu, Peng [4 ]
机构
[1] CUNY Queens Coll, Dept Math, Queens, NY 11367 USA
[2] Inst Adv Study, Sch Math, Einstein Dr, Princeton, NJ 08540 USA
[3] Univ E Anglia, Sch Math, Norwich Res Pk, Norwich NR4 7TJ, Norfolk, England
[4] Univ Warwick, Math Inst, Coventry CV4 7AL, W Midlands, England
来源
REPRESENTATION THEORY | 2016年 / 20卷
基金
美国国家科学基金会; 英国工程与自然科学研究理事会;
关键词
Local converse problem; special pairs of Whittaker functions; SUPERCUSPIDAL REPRESENTATIONS;
D O I
10.1090/ert/476
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Based on previous results of Jiang, Nien and the third-named author, we prove that any two minimax unitarizable supercuspidals of p-adic GL(N) that have the same depth and central character admit a special pair of Whittaker functions. As a corollary of our result, we prove Jacquet's conjecture on the local converse problem for GL(N), when N is prime.
引用
收藏
页码:1 / 13
页数:13
相关论文
共 25 条
[21]   l-modular representations of unramified p-adic U(2,1) [J].
Kurinczuk, Robert James .
ALGEBRA & NUMBER THEORY, 2014, 8 (08) :1801-1838
[22]   A Note on Bessel Functions for Supercuspidal Representations of GL(2) over a p-Adic Field [J].
Baruch, Ehud Moshe ;
Snitz, Kobi .
ALGEBRA COLLOQUIUM, 2011, 18 :733-738
[23]   Branching rules for supercuspidal representations of SL2(k), for k a p-adic field [J].
Nevins, Monica .
JOURNAL OF ALGEBRA, 2013, 377 :204-231
[24]   Cuspidal irreducible complex or l-modular representations of quaternionic forms of p-adic classical groups for odd p [J].
Skodlerack, Daniel .
MONATSHEFTE FUR MATHEMATIK, 2023, 201 (03) :881-942
[25]   Patterns in Branching Rules for Irreducible Representations of SL2(k), for k a p-adic field [J].
Nevins, Monica .
HARMONIC ANALYSIS ON REDUCTIVE, P-ADIC GROUPS, 2011, 543 :185-199