Internal and External Gettering of Iron Contamination in Power Technologies

被引:3
作者
Frascaroli, Jacopo [1 ]
Monge Roffarello, Pierpaolo [1 ]
Mica, Isabella [1 ]
机构
[1] STMicroelectronics, Via Camillo Olivetti 2, I-20864 Agrate Brianza, MB, Italy
来源
PHYSICA STATUS SOLIDI A-APPLICATIONS AND MATERIALS SCIENCE | 2021年 / 218卷 / 23期
关键词
annealing; boron; gettering; iron; low-temperature oxides; polycrystalline silicon; silicon; ON-INSULATOR WAFERS; POLYSILICON;
D O I
10.1002/pssa.202100206
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Substrate gettering and the contribution to the contamination reduction of backside layers are evaluated after high-temperature annealing, following intentional iron contamination at the backside in silicon epitaxial wafers typical of power technologies. Iron is detected at the frontside by deep-level transient spectroscopy within a depth corresponding to the actual devices. Herein, contamination occurring at the beginning of the semiconductor process flow is simulated and the role of the different gettering mechanisms is isolated. Substrate boron in epitaxial p over p+ wafers is effective in more than halving iron contamination at the front compared with a p-only substrate, especially at high contamination doses. In the absence of a specific thermal cycle for oxygen precipitation and growth in the bulk, long thermal treatment at 1200 degrees C induces a significant precipitate growth even in the beginning of the process, greatly contributing to iron gettering in the bulk. However, this effect is found to strongly depend on the silicon condition after crystal growth. No significant contribution to iron gettering from a backside polycrystalline silicon layer is found after high-temperature annealing, whereas a backoxide acts as diffusion barrier, effectively screening the substrate from contamination only for short thermal treatments or annealing temperature below 1000 degrees C.
引用
收藏
页数:5
相关论文
共 19 条
[1]  
Al-Ani Oras A., 2016, Solid State Phenomena, V242, P224, DOI 10.4028/www.scientific.net/SSP.242.224
[2]  
[Anonymous], 2000, Metal Impurities in Silicon-Device Fabrication
[3]   Competitive iron gettering between internal gettering sites and boron implantation in CZ-silicon [J].
Asghar, M. I. ;
Yli-Koski, M. ;
Savin, H. ;
Haarahiltunen, A. ;
Talvitie, H. ;
Sinkkonen, J. .
MATERIALS SCIENCE AND ENGINEERING B-ADVANCED FUNCTIONAL SOLID-STATE MATERIALS, 2009, 159-60 :224-227
[4]   Degradation of ultrathin oxides by iron contamination [J].
Choi, BD ;
Schroder, DK .
APPLIED PHYSICS LETTERS, 2001, 79 (16) :2645-2647
[5]   Impact of Metal Contamination in Silicon Solar Cells [J].
Coletti, Gianluca ;
Bronsveld, Paula C. P. ;
Hahn, Giso ;
Warta, Wilhelm ;
Macdonald, Daniel ;
Ceccaroli, Bruno ;
Wambach, Karsten ;
Le Quang, Nam ;
Fernandez, Juan M. .
ADVANCED FUNCTIONAL MATERIALS, 2011, 21 (05) :879-890
[6]   GETTERING THRESHOLDS FOR TRANSITION-METALS BY OXYGEN-RELATED DEFECTS IN SILICON [J].
FALSTER, RJ ;
FISHER, GR ;
FERRERO, G .
APPLIED PHYSICS LETTERS, 1991, 59 (07) :809-810
[7]   Gettering of iron in CZ-silicon by polysilicon layer [J].
Haarahiltunen, A. ;
Yli-Koski, M. ;
Talvitie, H. ;
Vahanissi, V. ;
Lindroos, J. ;
Savin, H. .
PHYSICA STATUS SOLIDI C: CURRENT TOPICS IN SOLID STATE PHYSICS, VOL 8, NO 3, 2011, 8 (03) :751-754
[8]   Gettering efficiencies of polysilicon-, stacking fault- and He-implanted backsides for Cu and Ni [J].
Hoelzl, R ;
Range, KJ ;
Fabry, L ;
Hage, J ;
Raineri, V .
MATERIALS SCIENCE AND ENGINEERING B-SOLID STATE MATERIALS FOR ADVANCED TECHNOLOGY, 2000, 73 (1-3) :95-98
[9]   Gettering in silicon-on-insulator wafers:: experimental studies and modelling [J].
Istratov, AA ;
Väinölä, H ;
Huber, W ;
Weber, ER .
SEMICONDUCTOR SCIENCE AND TECHNOLOGY, 2005, 20 (06) :568-575
[10]   Iron and its complexes in silicon [J].
Istratov, AA ;
Hieslmair, H ;
Weber, ER .
APPLIED PHYSICS A-MATERIALS SCIENCE & PROCESSING, 1999, 69 (01) :13-44