MIRROR CURVE OF ORBIFOLD HURWITZ NUMBERS

被引:0
|
作者
Dumitrescu, Olivia [1 ,2 ]
Mulase, Motohico [3 ,4 ]
机构
[1] Univ N Carolina, 340 Phillips Hall,CB 3250, Chapel Hill, NC 27599 USA
[2] Romanian Acad, Simion Stoilow Inst Math, Calea Grivitei 21, Bucharest 010702, Romania
[3] Univ Calif Davis, Dept Math, Davis, CA 95616 USA
[4] Univ Tokyo, Kavli Inst Phys & Math Universe, Kashiwa, Chiba, Japan
来源
REVUE ROUMAINE DE MATHEMATIQUES PURES ET APPLIQUEES | 2021年 / 66卷 / 02期
关键词
topological recursion; ribbon graphs; Hurwitz numbers; mirror curves; RECURSION;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Edge-contraction operations form an effective tool in various graph enumeration problems, such as counting Grothendieck's dessins d'enfants and simple and double Hurwitz numbers. These counting problems can be solved by a mechanism known as topological recursion, which is a mirror B-model corresponding to these counting problems. We show that for the case of orbifold Hurwitz numbers, the mirror objects, i.e., the spectral curve and the differential forms on it, are constructed solely from the edge-contraction operations of the counting problem in genus 0 and one marked point. This forms a parallelism with Gromov-Witten theory, where genus 0 Gromov-Witten invariants correspond to mirror B-model holomorphic geometry.
引用
收藏
页码:307 / 328
页数:22
相关论文
共 50 条
  • [21] A matrix model for simple Hurwitz numbers, and topological recursion
    Borot, Gaetan
    Eynard, Bertrand
    Mulase, Motohico
    Safnuk, Brad
    JOURNAL OF GEOMETRY AND PHYSICS, 2011, 61 (02) : 522 - 540
  • [22] Wall crossings for double Hurwitz numbers
    Cavalieri, Renzo
    Johnson, Paul
    Markwig, Hannah
    ADVANCES IN MATHEMATICS, 2011, 228 (04) : 1894 - 1937
  • [23] CLASSICAL HURWITZ NUMBERS AND RELATED COMBINATORICS
    Dubrovin, Boris
    Yang, Di
    Zagier, Don
    MOSCOW MATHEMATICAL JOURNAL, 2017, 17 (04) : 601 - 633
  • [24] HURWITZ NUMBERS AND PRODUCTS OF RANDOM MATRICES
    Orlov, A. Yu.
    THEORETICAL AND MATHEMATICAL PHYSICS, 2017, 192 (03) : 1282 - 1323
  • [25] Towards the geometry of double Hurwitz numbers
    Goulden, IP
    Jackson, DM
    Vakil, R
    ADVANCES IN MATHEMATICS, 2005, 198 (01) : 43 - 92
  • [26] Monotone Hurwitz Numbers in Genus Zero
    Goulden, I. P.
    Guay-Paquet, Mathieu
    Novak, Jonathan
    CANADIAN JOURNAL OF MATHEMATICS-JOURNAL CANADIEN DE MATHEMATIQUES, 2013, 65 (05): : 1020 - 1042
  • [27] Cut-and-join equation for monotone Hurwitz numbers revisited
    Dunin-Barkowski, P.
    Kramer, R.
    Popolitov, A.
    Shadrin, S.
    JOURNAL OF GEOMETRY AND PHYSICS, 2019, 137 : 1 - 6
  • [28] Topological recursion on transalgebraic spectral curves and Atlantes Hurwitz numbers
    Bouchard, Vincent
    Kramer, Reinier
    Weller, Quinten
    JOURNAL OF GEOMETRY AND PHYSICS, 2024, 206
  • [29] Polynomiality of monotone Hurwitz numbers in higher genera
    Goulden, I. P.
    Guay-Paquet, Mathieu
    Novak, Jonathan
    ADVANCES IN MATHEMATICS, 2013, 238 : 1 - 23
  • [30] Hurwitz numbers and integrable hierarchy of Volterra type
    Takasaki, Kanehisa
    JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2018, 51 (43)