Optical Tweezers Microrheology: From the Basics to Advanced Techniques and Applications

被引:69
作者
Robertson-Anderson, Rae M. [1 ]
机构
[1] Univ San Diego, Phys & Biophys Dept, 5998 Alcala Pk, San Diego, CA 92110 USA
基金
美国国家科学基金会;
关键词
ENTANGLED POLYMER-SOLUTIONS; SINGLE ACTIN-FILAMENTS; F-ACTIN; 2-POINT MICRORHEOLOGY; COLLOIDAL SUSPENSION; RADIATION PRESSURE; IN-VITRO; FORCES; PARTICLES; MOLECULE;
D O I
10.1021/acsmacrolett.8b00498
中图分类号
O63 [高分子化学(高聚物)];
学科分类号
070305 ; 080501 ; 081704 ;
摘要
Over the past few decades, microrheology has emerged as a widely used technique to measure the mechanical properties of soft viscoelastic materials. Optical tweezers offer a powerful platform for performing microrheology measurements and can measure rheological properties at the level of single molecules out to near macroscopic scales. Unlike passive microrheology methods, which use diffusing microspheres to extract rheological properties, optical tweezers can probe the nonlinear viscoelastic response, and measure the space- and time-dependent rheological properties of heterogeneous, nonequilibrium materials. In this Viewpoint, I describe the basic principles underlying optical tweezers microrheology, the instrumentation and material requirements, and key applications to widely studied soft biological materials. I also describe several sophisticated approaches that include coupling optical tweezers to fluorescence microscopy and microfluidics. The described techniques can robustly characterize noncontinuum mechanics, nonlinear mechanical responses, strain-field heterogeneities, stress propagation, force relaxation dynamics, and time-dependent mechanics of active materials.
引用
收藏
页码:968 / 975
页数:15
相关论文
共 63 条
[1]   OBSERVATION OF A SINGLE-BEAM GRADIENT FORCE OPTICAL TRAP FOR DIELECTRIC PARTICLES [J].
ASHKIN, A ;
DZIEDZIC, JM ;
BJORKHOLM, JE ;
CHU, S .
OPTICS LETTERS, 1986, 11 (05) :288-290
[2]   OPTICAL LEVITATION BY RADIATION PRESSURE [J].
ASHKIN, A ;
DZIEDZIC, JM .
APPLIED PHYSICS LETTERS, 1971, 19 (08) :283-&
[3]   ACCELERATION AND TRAPPING OF PARTICLES BY RADIATION PRESSURE [J].
ASHKIN, A .
PHYSICAL REVIEW LETTERS, 1970, 24 (04) :156-&
[4]   Unfolding individual nucleosomes by stretching single chromatin fibers with optical tweezers [J].
Bennink, ML ;
Leuba, SH ;
Leno, GH ;
Zlatanova, J ;
de Grooth, BG ;
Greve, J .
NATURE STRUCTURAL BIOLOGY, 2001, 8 (07) :606-610
[5]   Oscillating modes of driven colloids in overdamped systems [J].
Berner, Johannes ;
Mueller, Boris ;
Gomez-Solano, Juan Ruben ;
Krueger, Matthias ;
Bechinger, Clemens .
NATURE COMMUNICATIONS, 2018, 9
[6]  
Bianco P, 2007, BIOPHYS J, V93, P2102, DOI [10.1529/biophysj.107.106153, 10.1529/biophysj.l07.106153]
[7]   Passive and active microrheology with optical tweezers [J].
Brau, R. R. ;
Ferrer, J. M. ;
Lee, H. ;
Castro, C. E. ;
Tam, B. K. ;
Tarsa, P. B. ;
Matsudaira, P. ;
Boyce, M. C. ;
Kamm, R. D. ;
Lang, M. J. .
JOURNAL OF OPTICS A-PURE AND APPLIED OPTICS, 2007, 9 (08) :S103-S112
[8]   Comparing macrorheology and one- and two-point microrheology in wormlike micelle solutions [J].
Buchanan, M ;
Atakhorrami, M ;
Palierne, JF ;
Schmidt, CF .
MACROMOLECULES, 2005, 38 (21) :8840-8844
[9]   Nonlinear Microrheology Reveals Entanglement-Driven Molecular-Level Viscoelasticity of Concentrated DNA [J].
Chapman, Cole D. ;
Robertson-Anderson, Rae M. .
PHYSICAL REVIEW LETTERS, 2014, 113 (09)
[10]   Onset of Non-Continuum Effects in Microrheology of Entangled Polymer Solutions [J].
Chapman, Cole D. ;
Lee, Kent ;
Henze, Dean ;
Smith, Douglas E. ;
Robertson-Anderson, Rae M. .
MACROMOLECULES, 2014, 47 (03) :1181-1186