Singularities of Secant Varieties

被引:5
作者
Chou, Chih-Chi [1 ]
Song, Lei [2 ]
机构
[1] Univ Washington, Dept Math, Seattle, WA 98195 USA
[2] Univ Kansas, Dept Math, Lawrence, KS 66045 USA
基金
美国国家科学基金会;
关键词
NORMALITY; SYZYGIES;
D O I
10.1093/imrn/rnw321
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We study the singularities of the secant variety Sigma(X, L) associated to a smooth variety X embedded by a sufficiently positive adjoint line bundle L. We show that Sigma(X, L) is always Du Bois singular. Examples of secant varieties with worse singularities when L has weak positivity are provided. We also give a necessary and sufficient condition for Sigma(X, L) to have rational singularities.
引用
收藏
页码:2844 / 2865
页数:22
相关论文
共 25 条
[1]   Non-rational centers of log canonical singularities [J].
Alexeev, Valery ;
Hacon, Christopher D. .
JOURNAL OF ALGEBRA, 2012, 369 :1-15
[2]  
Anderson D, 2014, P AM MATH SOC, V142, P409
[3]  
[Anonymous], 2015, Math. Sci. Res. Inst. Publ.
[4]  
Beauville A., 1996, COMPLEX ALGEBRAIC SU
[5]  
BERTRAM A, 1992, J DIFFER GEOM, V35, P429
[6]   SYZYGIES AND KOSZUL COHOMOLOGY OF SMOOTH PROJECTIVE VARIETIES OF ARBITRARY DIMENSION [J].
EIN, L ;
LAZARSFELD, R .
INVENTIONES MATHEMATICAE, 1993, 111 (01) :51-67
[7]  
Fujino O, 2012, MICH MATH J, V61, P255
[8]  
Fulton W, 1998, INTERSECTION THEORY, V2
[9]   POTENTIALLY DU BOIS SPACES [J].
Graf, Patrick ;
Kovacs, Sandor J. .
JOURNAL OF SINGULARITIES, 2014, 8 :117-134
[10]  
Hartshorne R., 1977, Algebraic geometry, Graduate Texts in Mathematics, pxvi