2D MoS2 Neuromorphic Devices for Brain-Like Computational Systems

被引:306
作者
Jiang, Jie [1 ]
Guo, Junjie [1 ]
Wan, Xiang [2 ,3 ]
Yang, Yi [2 ,3 ]
Xie, Haipeng [1 ]
Niu, Dongmei [1 ]
Yang, Junliang [1 ]
He, Jun [1 ]
Gao, Yongli [1 ,4 ]
Wan, Qing [2 ,3 ]
机构
[1] Cent South Univ, Sch Phys & Elect, Hunan Key Lab Super Microstruct & Ultrafast Proc, Changsha 410083, Hunan, Peoples R China
[2] Nanjing Univ, Innovat Ctr Adv Microstruct, Sch Elect Sci & Engn & Collaborat, Nanjing 210093, Jiangsu, Peoples R China
[3] Chinese Acad Sci, Inst Microelect, Key Lab Microelect Devices & Integrated Technol, Beijing 100029, Peoples R China
[4] Univ Rochester, Dept Phys & Astron, Rochester, NY 14627 USA
基金
中国国家自然科学基金; 美国国家科学基金会;
关键词
RESISTIVE SWITCHING MEMORY; SYNAPTIC PLASTICITY; INTEGRATED-CIRCUITS; HIGH-PERFORMANCE; TRANSISTORS; SYNAPSES; NEURONS; MODULATION; GRAPHENE; ALUMINUM;
D O I
10.1002/smll.201700933
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Hardware implementation of artificial synapses/neurons with 2D solid-state devices is of great significance for nanoscale brain-like computational systems. Here, 2D MoS2 synaptic/neuronal transistors are fabricated by using poly(vinyl alcohol) as the laterally coupled, proton-conducting electrolytes. Fundamental synaptic functions, such as an excitatory postsynaptic current, paired-pulse facilitation, and a dynamic filter for information transmission of biological synapse, are successfully emulated. Most importantly, with multiple input gates and one modulatory gate, spiking-dependent logic operation/modulation, multiplicative neural coding, and neuronal gain modulation are also experimentally demonstrated. The results indicate that the intriguing 2D MoS2 transistors are also very promising for the next-generation of nanoscale neuromorphic device applications.
引用
收藏
页数:11
相关论文
共 65 条
[1]   XPS STUDY OF POLYMER ORGANOMETALLIC INTERACTION - TRIMETHYL ALUMINUM ON POLYVINYL-ALCOHOL POLYMER [J].
AKHTER, S ;
ZHOU, XL ;
WHITE, JM .
APPLIED SURFACE SCIENCE, 1989, 37 (02) :201-216
[2]   The contribution of single synapses to sensory representation in vivo [J].
Arenz, Alexander ;
Silver, R. Angus ;
Schaefer, Andreas T. ;
Margrie, Troy W. .
SCIENCE, 2008, 321 (5891) :977-980
[3]   Mimicking Neurotransmitter Release in Chemical Synapses via Hysteresis Engineering in MoS2 Transistors [J].
Arnold, Andrew J. ;
Razavieh, Ali ;
Nasr, Joseph R. ;
Schulman, Daniel S. ;
Eichfeld, Chad M. ;
Das, Saptarshi .
ACS NANO, 2017, 11 (03) :3110-3118
[4]  
Atluri PP, 1996, J NEUROSCI, V16, P5661
[5]   Synaptic modifications in cultured hippocampal neurons: Dependence on spike timing, synaptic strength, and postsynaptic cell type [J].
Bi, GQ ;
Poo, MM .
JOURNAL OF NEUROSCIENCE, 1998, 18 (24) :10464-10472
[6]   The single dendritic branch as a fundamental functional unit in the nervous system [J].
Branco, Tiago ;
Hausser, Michael .
CURRENT OPINION IN NEUROBIOLOGY, 2010, 20 (04) :494-502
[7]   Gain modulation from background synaptic input [J].
Chance, FS ;
Abbott, LF ;
Reyes, AD .
NEURON, 2002, 35 (04) :773-782
[8]   High-Performance, Highly Bendable MoS2 Transistors with High-K Dielectrics for Flexible Low-Power Systems [J].
Chang, Hsiao-Yu ;
Yang, Shixuan ;
Lee, Jongho ;
Tao, Li ;
Hwang, Wan-Sik ;
Jena, Debdeep ;
Lu, Nanshu ;
Akinwande, Deji .
ACS NANO, 2013, 7 (06) :5446-5452
[9]   Short-Term Memory to Long-Term Memory Transition in a Nanoscale Memristor [J].
Chang, Ting ;
Jo, Sung-Hyun ;
Lu, Wei .
ACS NANO, 2011, 5 (09) :7669-7676
[10]   A VLSI recurrent network of integrate-and-fire neurons connected by plastic synapses with long-term memory [J].
Chicca, E ;
Badoni, D ;
Dante, V ;
D'Andreagiovanni, M ;
Salina, G ;
Carota, L ;
Fusi, S ;
Del Giudice, P .
IEEE TRANSACTIONS ON NEURAL NETWORKS, 2003, 14 (05) :1297-1307