Concurrent Learning for Parameter Estimation Using Dynamic State-Derivative Estimators

被引:137
作者
Kamalapurkar, Rushikesh [1 ]
Reish, Benjamin [1 ]
Chowdhary, Girish [3 ]
Dixon, Warren E. [2 ]
机构
[1] Oklahoma State Univ, Dept Mech & Aerosp Engn, Stillwater, OK 74074 USA
[2] Univ Florida, Dept Mech & Aerosp Engn, Gainesville, FL 32611 USA
[3] Univ Illinois, Dept Agr & Biol Engn, Urbana, IL 61801 USA
关键词
Adaptive systems; concurrent learning; Lyapunov methods; observers; parameter estimation; ADAPTIVE-CONTROL; LINEAR-SYSTEMS; IDENTIFICATION;
D O I
10.1109/TAC.2017.2671343
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
A concurrent learning (CL)-based parameter estimator is developed to identify the unknown parameters in a nonlinear system. Unlike state-of-the-art CL techniques that assume knowledge of the state derivative or rely on numerical smoothing, CL is implemented using a dynamic state-derivative estimator. A novel purging algorithm is introduced to discard possibly erroneous data recorded during the transient phase for CL. Asymptotic convergence of the error states to the origin is established under a persistent excitation condition, and the error states are shown to be uniformly ultimately bounded under a finite excitation condition.
引用
收藏
页码:3594 / 3601
页数:8
相关论文
共 50 条
  • [41] Simultaneous state and dead-zone parameter estimation using high-gain observers
    Ibrir, Salim
    2009 IEEE INTERNATIONAL CONFERENCE ON SYSTEMS, MAN AND CYBERNETICS (SMC 2009), VOLS 1-9, 2009, : 311 - 316
  • [42] High dynamic formation target detection and parameter estimation using wavelets
    Lv Jinfei
    Yuan Sijie
    Cheng Naiping
    2007 INTERNATIONAL CONFERENCE ON WIRELESS COMMUNICATIONS, NETWORKING AND MOBILE COMPUTING, VOLS 1-15, 2007, : 1385 - +
  • [43] Parameter Estimation of Loranz Chaotic Dynamic System Using Bees Algorithm
    Gholipour, R.
    Khosravi, A.
    Mojallali, H.
    INTERNATIONAL JOURNAL OF ENGINEERING, 2013, 26 (03): : 257 - 262
  • [44] Modeling and Parameter Estimation for Gas-Phase Polyethylene Product Properties Using Dynamic and Steady-State Data
    Gibson, Lauren A.
    Jiang, Yan
    Boller, Timothy
    Chiang, Hsu
    McAuley, Kimberley B.
    MACROMOLECULAR REACTION ENGINEERING, 2023, 17 (02)
  • [46] State and parameter estimation using Monte Carlo evaluation of path integrals
    Quinn, John C.
    Abarbanel, Henry D. I.
    QUARTERLY JOURNAL OF THE ROYAL METEOROLOGICAL SOCIETY, 2010, 136 (652) : 1855 - 1867
  • [47] Combined state and parameter estimation for a landslide model using Kalman filter
    Mishra, Mohit
    Besancon, Gildas
    Chambon, Guillaume
    Baillet, Laurent
    IFAC PAPERSONLINE, 2021, 54 (07): : 304 - 309
  • [48] Parameter Validation for Kalman Filter Based Dynamic State Estimation of Power Plant Dynamics
    Paul, Avishek
    Joos, Geza
    Kamwa, Innocent
    2017 IEEE ELECTRICAL POWER AND ENERGY CONFERENCE (EPEC), 2017, : 247 - 252
  • [49] PV Model Parameter Estimation Using Modified FPA With Dynamic Switch Probability and Step Size Function
    Khursheed, Mehar-Un-Nisa
    Alghamdi, Mohammed A.
    Khan, Muhammad Faisal Nadeem
    Khan, Ahmed Khalil
    Khan, Irfan
    Ahmed, Ali
    Kiani, Arooj Tariq
    Khan, Muhammad Adnan
    IEEE ACCESS, 2021, 9 : 42027 - 42044
  • [50] Dynamic modelling and parameter estimation of a hydraulic robot manipulator using a multi-objective genetic algorithm
    Montazeri, A.
    West, C.
    Monk, S. D.
    Taylor, C. J.
    INTERNATIONAL JOURNAL OF CONTROL, 2017, 90 (04) : 661 - 683