Concurrent Learning for Parameter Estimation Using Dynamic State-Derivative Estimators

被引:137
作者
Kamalapurkar, Rushikesh [1 ]
Reish, Benjamin [1 ]
Chowdhary, Girish [3 ]
Dixon, Warren E. [2 ]
机构
[1] Oklahoma State Univ, Dept Mech & Aerosp Engn, Stillwater, OK 74074 USA
[2] Univ Florida, Dept Mech & Aerosp Engn, Gainesville, FL 32611 USA
[3] Univ Illinois, Dept Agr & Biol Engn, Urbana, IL 61801 USA
关键词
Adaptive systems; concurrent learning; Lyapunov methods; observers; parameter estimation; ADAPTIVE-CONTROL; LINEAR-SYSTEMS; IDENTIFICATION;
D O I
10.1109/TAC.2017.2671343
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
A concurrent learning (CL)-based parameter estimator is developed to identify the unknown parameters in a nonlinear system. Unlike state-of-the-art CL techniques that assume knowledge of the state derivative or rely on numerical smoothing, CL is implemented using a dynamic state-derivative estimator. A novel purging algorithm is introduced to discard possibly erroneous data recorded during the transient phase for CL. Asymptotic convergence of the error states to the origin is established under a persistent excitation condition, and the error states are shown to be uniformly ultimately bounded under a finite excitation condition.
引用
收藏
页码:3594 / 3601
页数:8
相关论文
共 50 条