Multidimensional Multifractal Random Measures

被引:22
|
作者
Rhodes, Remi [1 ]
Vargas, Vincent [1 ]
机构
[1] Univ Paris 09, CEREMADE, CNRS, UMR 7534, F-75016 Paris, France
来源
关键词
Random measures; Multifractal processes; POSITIVE-DEFINITE FUNCTIONS; TURBULENCE;
D O I
10.1214/EJP.v15-746
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
We construct and study space homogeneous and isotropic random measures (MMRM) which generalize the so-called MRM measures constructed in [1]. Our measures satisfy an exact scale invariance equation (see equation (1) below) and are therefore natural models in dimension 3 for the dissipation measure in a turbulent flow.
引用
收藏
页码:241 / 258
页数:18
相关论文
共 50 条
  • [31] Convolutions and the Geometry of multifractal measures
    Falconer, KJ
    O'Neil, TC
    MATHEMATISCHE NACHRICHTEN, 1999, 204 : 61 - 82
  • [32] CLUSTERING PARADIGMS AND MULTIFRACTAL MEASURES
    MARTINEZ, VJ
    JONES, BJT
    DOMINGUEZTENREIRO, R
    VANDEWEYGAERT, R
    ASTROPHYSICAL JOURNAL, 1990, 357 (01): : 50 - 61
  • [33] Multifractal spectrum of multinomial measures
    Okada, T
    Sekiguchi, T
    Shiota, Y
    PROCEEDINGS OF THE JAPAN ACADEMY SERIES A-MATHEMATICAL SCIENCES, 1997, 73 (07) : 123 - 125
  • [34] General multifractal dimensions of measures
    Selmi, Bilel
    FUZZY SETS AND SYSTEMS, 2025, 499
  • [35] Multifractal measures of image quality
    Langi, AZR
    Soemintapura, K
    Mengko, TL
    Kinsner, W
    ICICS - PROCEEDINGS OF 1997 INTERNATIONAL CONFERENCE ON INFORMATION, COMMUNICATIONS AND SIGNAL PROCESSING, VOLS 1-3: THEME: TRENDS IN INFORMATION SYSTEMS ENGINEERING AND WIRELESS MULTIMEDIA COMMUNICATIONS, 1997, : 726 - 730
  • [36] MULTIFRACTAL MEASURES, ESPECIALLY FOR THE GEOPHYSICIST
    MANDELBROT, BB
    PURE AND APPLIED GEOPHYSICS, 1989, 131 (1-2) : 5 - 42
  • [37] Revisiting the multifractal analysis of measures
    Ben Nasr, Fathi
    Peyriere, Jacques
    REVISTA MATEMATICA IBEROAMERICANA, 2013, 29 (01) : 315 - 328
  • [38] SPECTRAL PROPERTIES OF MULTIFRACTAL MEASURES
    PISARENKO, VF
    PISARENKO, DV
    PHYSICS LETTERS A, 1991, 153 (4-5) : 169 - 172
  • [39] Large deviations of multifractal measures
    Veneziano, D
    FRACTALS-COMPLEX GEOMETRY PATTERNS AND SCALING IN NATURE AND SOCIETY, 2002, 10 (01) : 117 - 129
  • [40] Multifractal variation for projections of measures
    Douzi, Zied
    Selmi, Bilel
    CHAOS SOLITONS & FRACTALS, 2016, 91 : 414 - 420