Comparative Transcriptome Investigation of Nosema ceranae Infecting Eastern Honey Bee Workers

被引:7
作者
Fan, Yuanchan [1 ]
Wang, Jie [1 ]
Yu, Kejun [1 ]
Zhang, Wende [1 ]
Cai, Zongbing [1 ]
Sun, Minghui [1 ]
Hu, Ying [1 ]
Zhao, Xiao [1 ]
Xiong, Cuiling [1 ]
Niu, Qingsheng [2 ]
Chen, Dafu [1 ,3 ]
Guo, Rui [1 ,3 ]
机构
[1] Fujian Agr & Forestry Univ, Coll Anim Sci, Coll Bee Sci, Fuzhou 350002, Peoples R China
[2] Jilin Prov Inst Apicultural Sci, Jilin 132000, Jilin, Peoples R China
[3] Fujian Agr & Forestry Univ, Apitherapy Res Inst, Fuzhou 350002, Peoples R China
基金
中国国家自然科学基金;
关键词
honey bee; Apis cerana cerana; Nosema ceranae; microsporidian; transcriptome; differentially expressed gene; infection mechanism; APIS-MELLIFERA; MICROSPORIDIAN PARASITE; STRESS;
D O I
10.3390/insects13030241
中图分类号
Q96 [昆虫学];
学科分类号
摘要
Simple Summary At present, interaction between Nosema ceranae and Apis cerana is poorly understood, though A. cerana is the original host for N. ceranae. Here, comparative investigation was conducted using transcriptome data from N. ceranae infecting Apis cerana cerana workers at seven days post inoculation (dpi) and 10 dpi (NcT1 and NcT2 groups) as well as N. ceranae spores (NcCK group). There were 1411, 604, and 38 DEGs identified in NcCK vs. NcT1, NcCK vs. NcT2, and NcT1 vs. NcT2 comparison groups. Additionally, 10 upregulated genes and nine downregulated ones were shared by above-mentioned comparison groups. GO classification and KEGG pathway analysis suggested that these DEGs were engaged in a number of key functional terms and pathways such as cell part and glycolysis. Further analysis indicated that most of virulence factor-encoding genes were upregulated, while a few were downregulated during the fungal infection. Findings in this current work provide a basis for clarifying the molecular mechanism udnerlying N. ceranae infection and host-microsporidian interaction during bee nosemosis. Apis cerana is the original host for Nosema ceranae, a widespread fungal parasite resulting in honey bee nosemosis, which leads to severe losses to the apiculture industry throughout the world. However, knowledge of N. ceranae infecting eastern honey bees is extremely limited. Currently, the mechanism underlying N. ceranae infection is still largely unknown. Based on our previously gained high-quality transcriptome datasets derived from N. ceranae spores (NcCK group), N. ceranae infecting Apis cerana cerana workers at seven days post inoculation (dpi) and 10 dpi (NcT1 and NcT2 groups), comparative transcriptomic investigation was conducted in this work, with a focus on virulence factor-associated differentially expressed genes (DEGs). Microscopic observation showed that the midguts of A. c. cerana workers were effectively infected after inoculation with clean spores of N. ceranae. In total, 1411, 604, and 38 DEGs were identified from NcCK vs. NcT1, NcCK vs. NcT2, and NcT1 vs. NcT2 comparison groups. Venn analysis showed that 10 upregulated genes and nine downregulated ones were shared by the aforementioned comparison groups. The GO category indicated that these DEGs were involved in a series of functional terms relevant to biological process, cellular component, and molecular function such as metabolic process, cell part, and catalytic activity. Additionally, KEGG pathway analysis suggested that the DEGs were engaged in an array of pathways of great importance such as metabolic pathway, glycolysis, and the biosynthesis of secondary metabolites. Furthermore, expression clustering analysis demonstrated that the majority of genes encoding virulence factors such as ricin B lectins and polar tube proteins displayed apparent upregulation, whereas a few virulence factor-associated genes such as hexokinase gene and 6-phosphofructokinase gene presented downregulation during the fungal infection. Finally, the expression trend of 14 DEGs was confirmed by RT-qPCR, validating the reliability of our transcriptome datasets. These results together demonstrated that an overall alteration of the transcriptome of N. ceranae occurred during the infection of A. c. cerana workers, and most of the virulence factor-related genes were induced to activation to promote the fungal invasion. Our findings not only lay a foundation for clarifying the molecular mechanism underlying N. ceranae infection of eastern honey bee workers and microsporidian-host interaction.
引用
收藏
页数:14
相关论文
共 44 条
[1]   RNA-sequence analysis of gene expression from honeybees (Apis mellifera) infected with Nosema ceranae [J].
Badaoui, Bouabid ;
Fougeroux, Andre ;
Petit, Fabien ;
Anselmo, Anna ;
Gorni, Chiara ;
Cucurachi, Marco ;
Cersini, Antonella ;
Granato, Anna ;
Cardeti, Giusy ;
Formato, Giovanni ;
Mutinelli, Franco ;
Giuffra, Elisabetta ;
Williams, John L. ;
Botti, Sara .
PLOS ONE, 2017, 12 (03)
[2]  
[陈红丽 Chen Hongli], 2018, [蚕业科学, Acta Sericologica Sinica], V44, P70
[3]   Iridovirus and Microsporidian Linked to Honey Bee Colony Decline [J].
Bromenshenk, Jerry J. ;
Henderson, Colin B. ;
Wick, Charles H. ;
Stanford, Michael F. ;
Zulich, Alan W. ;
Jabbour, Rabih E. ;
Deshpande, Samir V. ;
McCubbin, Patrick E. ;
Seccomb, Robert A. ;
Welch, Phillip M. ;
Williams, Trevor ;
Firth, David R. ;
Skowronski, Evan ;
Lehmann, Margaret M. ;
Bilimoria, Shan L. ;
Gress, Joanna ;
Wanner, Kevin W. ;
Cramer, Robert A., Jr. .
PLOS ONE, 2010, 5 (10)
[4]   Comparative Identification of MicroRNAs in Apis cerana cerana Workers' Midguts in Response to Nosema ceranae Invasion [J].
Chen, Dafu ;
Du, Yu ;
Chen, Huazhi ;
Fan, Yuanchan ;
Fan, Xiaoxue ;
Zhu, Zhiwei ;
Wang, Jie ;
Xiong, Cuiling ;
Zheng, Yanzhen ;
Hou, Chunsheng ;
Diao, Qingyun ;
Guo, Rui .
INSECTS, 2019, 10 (09)
[5]   Genome-Wide Identification of Long Non-Coding RNAs and Their Regulatory Networks Involved in Apis mellifera ligustica Response to Nosema ceranae Infection [J].
Chen, Dafu ;
Chen, Huazhi ;
Du, Yu ;
Zhou, Dingding ;
Geng, Sihai ;
Wang, Haipeng ;
Wan, Jieqi ;
Xiong, Cuiling ;
Zheng, Yanzhen ;
Guo, Rui .
INSECTS, 2019, 10 (08)
[6]   Nosema ceranae is a long-present and wide-spread microsporidian infection of the European honey bee (Apis mellifera) in the United States [J].
Chen, Yanping ;
Evans, Jay D. ;
Smith, I. Bart ;
Pettis, Jeffery S. .
JOURNAL OF INVERTEBRATE PATHOLOGY, 2008, 97 (02) :186-188
[7]   Morphological, Molecular, and Phylogenetic Characterization of Nosema ceranae, a Microsporidian Parasite Isolated from the European Honey Bee, Apis mellifera [J].
Chen, Yanping P. ;
Evans, Jay D. ;
Murphy, Charles ;
Gutell, Robin ;
Zuker, Michael ;
Gundensen-Rindal, Dawn ;
Pettis, Jeff S. .
JOURNAL OF EUKARYOTIC MICROBIOLOGY, 2009, 56 (02) :142-147
[8]   The ABC gene family in arthropods: Comparative genomics and role in insecticide transport and resistance [J].
Dermauw, Wannes ;
Van Leeuwen, Thomas .
INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY, 2014, 45 :89-110
[9]  
Du Yu, 2021, Scientia Agricultura Sinica, V54, P1805, DOI 10.3864/j.issn.0578-1752.2021.08.019
[10]   MicroRNA dataset of normal and Nosema ceranae-infected midguts of Apis cerana cerana workers [J].
Du, Yu ;
Zhou, Dingding ;
Chen, Huazhi ;
Xiong, Cuiling ;
Zheng, Yanzhen ;
Chen, Dafu ;
Guo, Rui .
DATA IN BRIEF, 2019, 26