Multi-dimensional data integration algorithm based on random walk with restart

被引:18
作者
Wen, Yuqi [1 ]
Song, Xinyu [2 ]
Yan, Bowei [1 ]
Yang, Xiaoxi [3 ]
Wu, Lianlian [1 ,4 ]
Leng, Dongjin [1 ]
He, Song [1 ]
Bo, Xiaochen [1 ]
机构
[1] Beijing Inst Radiat Med, Dept Biotechnol, Beijing 100850, Peoples R China
[2] Chinese Peoples Liberat Army Gen Hosp, Dept Biomed Engn, Beijing 100853, Peoples R China
[3] Capital Med Univ, Beijing Friendship Hosp, Expt Ctr, Beijing 100069, Peoples R China
[4] Tianjin Univ, Acad Med Engn & Translat Med, Tianjin 300072, Peoples R China
关键词
Random walk with restart; Multiplex network; Multi-dimensional data integration; Cancer subtyping; MOLECULAR CLASSIFICATION; CLASS DISCOVERY; EXPRESSION; JOINT; TOOL;
D O I
10.1186/s12859-021-04029-3
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
BackgroundThe accumulation of various multi-omics data and computational approaches for data integration can accelerate the development of precision medicine. However, the algorithm development for multi-omics data integration remains a pressing challenge.ResultsHere, we propose a multi-omics data integration algorithm based on random walk with restart (RWR) on multiplex network. We call the resulting methodology Random Walk with Restart for multi-dimensional data Fusion (RWRF). RWRF uses similarity network of samples as the basis for integration. It constructs the similarity network for each data type and then connects corresponding samples of multiple similarity networks to create a multiplex sample network. By applying RWR on the multiplex network, RWRF uses stationary probability distribution to fuse similarity networks. We applied RWRF to The Cancer Genome Atlas (TCGA) data to identify subtypes in different cancer data sets. Three types of data (mRNA expression, DNA methylation, and microRNA expression data) are integrated and network clustering is conducted. Experiment results show that RWRF performs better than single data type analysis and previous integrative methods.ConclusionsRWRF provides powerful support to users to decipher the cancer molecular subtypes, thus may benefit precision treatment of specific patients in clinical practice.
引用
收藏
页数:22
相关论文
共 45 条
  • [1] Multi-Omics Factor Analysis-a framework for unsupervised integration of multi-omics data sets
    Argelaguet, Ricard
    Velten, Britta
    Arnol, Damien
    Dietrich, Sascha
    Zenz, Thorsten
    Marioni, John C.
    Buettner, Florian
    Huber, Wolfgang
    Stegle, Oliver
    [J]. MOLECULAR SYSTEMS BIOLOGY, 2018, 14 (06)
  • [2] Integrated genomic characterization of adrenocortical carcinoma
    Assie, Guillaume
    Letouze, Eric
    Fassnacht, Martin
    Jouinot, Anne
    Luscap, Windy
    Barreau, Olivia
    Omeiri, Hanin
    Rodriguez, Stephanie
    Perlemoine, Karine
    Rene-Corail, Fernande
    Elarouci, Nabila
    Sbiera, Silviu
    Kroiss, Matthias
    Allolio, Bruno
    Waldmann, Jens
    Quinkler, Marcus
    Mannelli, Massimo
    Mantero, Franco
    Papathomas, Thomas
    De Krijger, Ronald
    Tabarin, Antoine
    Kerlan, Veronique
    Baudin, Eric
    Tissier, Frederique
    Dousset, Bertrand
    Groussin, Lionel
    Amar, Laurence
    Clauser, Eric
    Bertagna, Xavier
    Ragazzon, Bruno
    Beuschlein, Felix
    Libe, Rossella
    de Reynies, Aurelien
    Bertherat, Jerome
    [J]. NATURE GENETICS, 2014, 46 (06) : 607 - 612
  • [3] Benchmarking joint multi-omics dimensionality reduction approaches for the study of cancer
    Cantini, Laura
    Zakeri, Pooya
    Hernandez, Celine
    Naldi, Aurelien
    Thieffry, Denis
    Remy, Elisabeth
    Baudot, Anais
    [J]. NATURE COMMUNICATIONS, 2021, 12 (01)
  • [4] Serum miR-483-5p and miR-195 are predictive of recurrence risk in adrenocortical cancer patients
    Chabre, O.
    Libe, R.
    Assie, G.
    Barreau, O.
    Bertherat, J.
    Bertagna, X.
    Feige, J-J
    Cherradi, N.
    [J]. ENDOCRINE-RELATED CANCER, 2013, 20 (04) : 579 - 594
  • [5] Integrative clustering of multi-level 'omic data based on non-negative matrix factorization algorithm
    Chalise, Prabhakar
    Fridley, Brooke L.
    [J]. PLOS ONE, 2017, 12 (05):
  • [6] InterSIM: Simulation tool for multiple integrative 'omic datasets'
    Chalise, Prabhakar
    Raghavan, Rama
    Fridley, Brooke L.
    [J]. COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE, 2016, 128 : 69 - 74
  • [7] Integrative clustering methods for high-dimensional molecular data
    Chalise, Prabhakar
    Koestler, Devin C.
    Bimali, Milan
    Yu, Qing
    Fridley, Brooke L.
    [J]. TRANSLATIONAL CANCER RESEARCH, 2014, 3 (03) : 202 - 216
  • [8] Drug-target interaction prediction by random walk on the heterogeneous network
    Chen, Xing
    Liu, Ming-Xi
    Yan, Gui-Ying
    [J]. MOLECULAR BIOSYSTEMS, 2012, 8 (07) : 1970 - 1978
  • [9] microRNAs as Potential Biomarkers in Adrenocortical Cancer: Progress and Challenges
    Cherradi, Nadia
    [J]. FRONTIERS IN ENDOCRINOLOGY, 2016, 6
  • [10] Navigability of interconnected networks under random failures
    De Domenico, Manlio
    Sole-Ribalta, Albert
    Gomez, Sergio
    Arenas, Alex
    [J]. PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2014, 111 (23) : 8351 - 8356