Exact analytical solution of a nonlinear equation arising in heat transfer

被引:43
作者
Abbasbandy, S. [1 ]
Shivanian, E. [1 ]
机构
[1] Imam Khomeini Int Univ, Dept Math, Ghazvin 3414916818, Iran
关键词
Nonlinear heat transfer equation; Exact analytic solutions; Hypergeometric function; Gamma function; HOMOTOPY-PERTURBATION METHOD;
D O I
10.1016/j.physleta.2009.11.062
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
This Letter shows that the nonlinear equation arising in heat transfer recently investigated in papers [D.D. Ganji, Phys. Lett. A 355 (2006) 337; S. Abbasbandy, Phys. Lett. A 360 (2006) 109; Flafez Tari, D.D. Ganji, H. Babazadeh. Phys. Lett. A 363 (2007) 213] and [M.S.H. Chowdhury, I. Hashim. Phys. Lett. A 372 (2008) 1240] is exactly solvable, analyses the equation fully and, furthermore, gives analytic exact Solution in implicit form for each value of parameters of equation. (C) 2009 Elsevier B.V. All rights reserved.
引用
收藏
页码:567 / 574
页数:8
相关论文
共 5 条
[1]   The application of homotopy analysis method to nonlinear equations arising in heat transfer [J].
Abbasbandy, S. .
PHYSICS LETTERS A, 2006, 360 (01) :109-113
[2]   Analytical solutions to heat transfer equations by homotopy-perturbation method revisited [J].
Chowdhury, M. S. H. ;
Hashim, I. .
PHYSICS LETTERS A, 2008, 372 (08) :1240-1243
[3]   The application of He's homotopy perturbation method to nonlinear equations arising in heat transfer [J].
Ganji, D. D. .
PHYSICS LETTERS A, 2006, 355 (4-5) :337-341
[4]   Exact analytical solution of a nonlinear reaction-diffusion model in porous catalysts [J].
Magyari, Eugen .
CHEMICAL ENGINEERING JOURNAL, 2008, 143 (1-3) :167-171
[5]   The application of He's variational iteration method to nonlinear equations arising in heat transfer [J].
Tari, Hafez ;
Ganji, D. D. ;
Babazadeh, H. .
PHYSICS LETTERS A, 2007, 363 (03) :213-217