High temperature strain sensing with alumina ceramic derived fiber based Fabry-Perot interferometer

被引:27
|
作者
Wang, Z. [1 ]
Liu, H. [1 ]
Ma, Z. [1 ]
Chen, Z. [1 ]
Wang, T. [1 ]
Pang, F. [1 ]
机构
[1] Shanghai Univ, Key Lab Specialty Fiber Opt & Opt Access Networks, Joint Int Res Lab Specialty Fiber Opt & Adv Commu, Shanghai Inst Commun & Data Sci, Shanghai 200444, Peoples R China
基金
中国国家自然科学基金;
关键词
TAPER MICHELSON INTERFEROMETER; FEMTOSECOND LASER; BRAGG GRATINGS; SENSOR;
D O I
10.1364/OE.27.027691
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
A Fabry-Perot interferometer (FPI) based on an alumina ceramic derived fiber (CDF) is proposed and demonstrated for high temperature strain sensing. The strain sensor is constructed by splicing a piece of CDF between two standard single-mode fibers (SMFs). The strain properties of the sensor are investigated from room temperature to 1200 degrees C. Experimental results show that the wavelength shift of the CDF-FPI presents a linear relationship with the tensile strain at both room temperature and high temperature with up to 1000 degrees C. The strain sensitivity is calculated to be 1.5 pm/mu epsilon at 900 degrees C, and the linear response is repeatable within 0-3000 mu epsilon. Moreover, for each applied force at 1000 degrees C, the wavelength shift versus time shows the stability of the developed CDF-FPI sensor within 0-2000 mu epsilon. The obtained results show that such a CDF-FPI has potential application in various engineering areas, such as aeronautics, metallurgy, and gas boiler. (C) 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement.
引用
收藏
页码:27691 / 27701
页数:11
相关论文
共 50 条
  • [31] Lateral force sensing arrangement based on an all fiber Fabry-Perot interferometer
    Jauregui-Vazquez, D.
    Estudillo-Ayala, J. M.
    Rojas-Laguna, R.
    Vargas-Rodriguez, E.
    Sierra-Hernandez, J. M.
    Gallegos-Arellano, E.
    Claudio-Gonzalez, D.
    OPTIK, 2015, 126 (24): : 5767 - 5770
  • [32] Polymer Microbubble-Based Fabry-Perot Fiber Interferometer and Sensing Applications
    Tan, Xiaoling
    Li, Xuejin
    Geng, Youfu
    Yin, Zhen
    Wang, Lele
    Wang, Wenyuan
    Deng, Yuanlong
    IEEE PHOTONICS TECHNOLOGY LETTERS, 2015, 27 (19) : 2035 - 2038
  • [33] Humidity Sensor Based on Fabry-Perot Interferometer and Intracavity Sensing of Fiber Laser
    Shi, Jia
    Xu, Degang
    Xu, Wei
    Wang, Yuye
    Yan, Chao
    Zhang, Chao
    Yan, Dexian
    He, Yixin
    Tang, Longhuang
    Zhang, Weihong
    Liu, Tiegen
    Yao, Jianquan
    JOURNAL OF LIGHTWAVE TECHNOLOGY, 2017, 35 (21) : 4789 - 4795
  • [34] Radiation-Resistant Optical Fiber Fabry-Perot Interferometer Used for High-Temperature Sensing
    Lyu, Dajuan
    Peng, Jiankun
    Huang, Qing
    Zheng, Wei
    Xiong, Liangming
    Yang, Minghong
    IEEE SENSORS JOURNAL, 2021, 21 (01) : 57 - 61
  • [35] Angled fiber-based Fabry-Perot interferometer
    Zhang, Xinpu
    Li, Lixia
    Zou, Xihua
    Luo, Bin
    Pan, Wei
    Yan, Lianshan
    Wu, Qiang
    OPTICS LETTERS, 2020, 45 (02) : 292 - 295
  • [36] Research progress of optical fiber Fabry-Perot interferometer high temperature sensors
    Li, Ai-wu
    Shan, Tian-qi
    Guo, Qi
    Pan, Xue-peng
    Liu, Shan-ren
    Chen, Chao
    Yu, Yong-sen
    CHINESE OPTICS, 2022, 15 (04) : 609 - 624
  • [37] Optical fiber refractometer based on a Fabry-Perot interferometer
    Silva, Susana F. O.
    Frazao, O.
    Caldas, Paul
    Santos, Jose L.
    Araujo, F. M.
    Ferreira, Luis A.
    OPTICAL ENGINEERING, 2008, 47 (05)
  • [38] Crystallization-sapphire-derived-fiber-based Fabry-Perot interferometer for refractive index and high-temperature measurement
    Zhang, Penghao
    Zhang, Li
    Mourelatos, Zissimos P.
    Wang, Zhongyu
    APPLIED OPTICS, 2018, 57 (30) : 9016 - 9021
  • [39] Fiber Fabry-Perot interferometer with precision glass-ceramic jacketing
    Sakamoto, A
    Nishii, J
    IEEE PHOTONICS TECHNOLOGY LETTERS, 2005, 17 (07) : 1462 - 1464
  • [40] Fiber Fabry-Perot Interferometer for Measurement of Gas Pressure and Temperature
    Xu, B.
    Liu, Y. M.
    Wang, D. N.
    Li, J. Q.
    JOURNAL OF LIGHTWAVE TECHNOLOGY, 2016, 34 (21) : 4920 - 4925