High temperature strain sensing with alumina ceramic derived fiber based Fabry-Perot interferometer

被引:27
作者
Wang, Z. [1 ]
Liu, H. [1 ]
Ma, Z. [1 ]
Chen, Z. [1 ]
Wang, T. [1 ]
Pang, F. [1 ]
机构
[1] Shanghai Univ, Key Lab Specialty Fiber Opt & Opt Access Networks, Joint Int Res Lab Specialty Fiber Opt & Adv Commu, Shanghai Inst Commun & Data Sci, Shanghai 200444, Peoples R China
基金
中国国家自然科学基金;
关键词
TAPER MICHELSON INTERFEROMETER; FEMTOSECOND LASER; BRAGG GRATINGS; SENSOR;
D O I
10.1364/OE.27.027691
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
A Fabry-Perot interferometer (FPI) based on an alumina ceramic derived fiber (CDF) is proposed and demonstrated for high temperature strain sensing. The strain sensor is constructed by splicing a piece of CDF between two standard single-mode fibers (SMFs). The strain properties of the sensor are investigated from room temperature to 1200 degrees C. Experimental results show that the wavelength shift of the CDF-FPI presents a linear relationship with the tensile strain at both room temperature and high temperature with up to 1000 degrees C. The strain sensitivity is calculated to be 1.5 pm/mu epsilon at 900 degrees C, and the linear response is repeatable within 0-3000 mu epsilon. Moreover, for each applied force at 1000 degrees C, the wavelength shift versus time shows the stability of the developed CDF-FPI sensor within 0-2000 mu epsilon. The obtained results show that such a CDF-FPI has potential application in various engineering areas, such as aeronautics, metallurgy, and gas boiler. (C) 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement.
引用
收藏
页码:27691 / 27701
页数:11
相关论文
共 35 条
  • [1] HIGH-TEMPERATURE BRILLOUIN-SCATTERING IN FUSED QUARTZ
    BUCARO, JA
    DARDY, HD
    [J]. JOURNAL OF APPLIED PHYSICS, 1974, 45 (12) : 5324 - 5329
  • [2] Extreme Silica Optical Fibre Gratings
    Canning, John
    Stevenson, Michael
    Bandyopadhyay, Somnath
    Cook, Kevin
    [J]. SENSORS, 2008, 8 (10): : 6448 - 6452
  • [3] Refractive-index-modified-dot Fabry-Perot fiber probe fabricated by femtosecond laser for high-temperature sensing
    Chen, Pengcheng
    Shu, Xuewen
    [J]. OPTICS EXPRESS, 2018, 26 (05): : 5292 - 5299
  • [4] Dragic P, 2012, NAT PHOTONICS, V6, P627, DOI [10.1038/nphoton.2012.182, 10.1038/NPHOTON.2012.182]
  • [5] Heterogeneous all-solid multicore fiber based multipath Michelson interferometer for high temperature sensing
    Duan, Li
    Zhang, Peng
    Tang, Ming
    Wang, Ruoxu
    Zhao, Zhiyong
    Fu, Songnian
    Gan, Lin
    Zhu, Benpeng
    Tong, Weijun
    Liu, Deming
    Shum, Perry Ping
    [J]. OPTICS EXPRESS, 2016, 24 (18): : 20210 - 20218
  • [6] High temperature sensing with fiber Bragg gratings in sapphire-derived all-glass optical fibers
    Elsmann, Tino
    Lorenz, Adrian
    Yazd, Nazila Safari
    Habisreuther, Tobias
    Dellith, Jan
    Schwuchow, Anka
    Bierlich, Joerg
    Schuster, Kay
    Rothhardt, Manfred
    Kido, Ladislav
    Bartelt, Hartmut
    [J]. OPTICS EXPRESS, 2014, 22 (22): : 26831 - 26839
  • [7] A miniature temperature high germanium doped PCF interferometer sensor
    Favero, F. C.
    Spittel, R.
    Just, F.
    Kobelke, J.
    Rothhardt, M.
    Bartelt, H.
    [J]. OPTICS EXPRESS, 2013, 21 (25): : 30266 - 30274
  • [8] Fabry-Perot cavity based on silica tube for strain sensing at high temperatures
    Ferreira, Marta S.
    Roriz, Paulo
    Bierlich, Joerg
    Kobelke, Jens
    Wondraczek, Katrin
    Aichele, Claudia
    Schuster, Kay
    Santos, Jose L.
    Frazao, Orlando
    [J]. OPTICS EXPRESS, 2015, 23 (12): : 16063 - 16070
  • [9] Type I and II Bragg gratings made with infrared femtosecond radiation in high and low alumina content aluminosilicate optical fibers
    Grobnic, Dan
    Mihailov, Stephen J.
    Ballato, John
    Dragic, Peter D.
    [J]. OPTICA, 2015, 2 (04): : 313 - 322
  • [10] Refractive Index Modulation by Crystallization in Sapphire-Derived Fiber
    Hong, Lin
    Pang, Fufei
    Liu, Huanhuan
    Xu, Jin
    Chen, Zhenyi
    Zhao, Ziwen
    Wang, Tingyun
    [J]. IEEE PHOTONICS TECHNOLOGY LETTERS, 2017, 29 (09) : 723 - 726