Robust gain scheduling baseline controller for floating offshore wind turbines

被引:38
|
作者
Lemmer , Frank [1 ]
Yu, Wei [1 ]
Schlipf, David [1 ]
Cheng, Po Wen [1 ]
van den Berg, G. P. [1 ]
机构
[1] Univ Stuttgart, Stuttgart Wind Energy SWE, Allmandring 5B, D-70569 Stuttgart, Germany
关键词
control-oriented modeling; floating wind turbine; gain scheduling; robustness; SISO control; DYNAMICS; MODEL;
D O I
10.1002/we.2408
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
The possibility of a pitch instability for floating wind turbines, due to the blade-pitch controller, has been discussed extensively in recent years. Contrary to many advanced multi-input-multi-output controllers that have been proposed, this paper aims at a standard proportional-integral type, only feeding back the rotor speed error. The advantage of this controller is its standard layout, equal to onshore turbines, and the clearly defined model-based control design procedure, which can be fully automated. It is more robust than most advanced controllers because it does not require additional signals of the floating platform, which make controllers often sensitive to unmodeled dynamics. For the design of this controller, a tailored linearized coupled dynamic model of reduced order is used with a detailed representation of the hydrodynamic viscous drag. The stability margin is the main design criterion at each wind speed. This results in a gain scheduling function, which looks fundamentally different than the one of onshore turbines. The model-based controller design process has been automated, dependent only on a given stability margin. In spite of the simple structure, the results show that the controller performance satisfies common design requirements of wind turbines, which is confirmed by a model of higher fidelity than the controller design model. The controller performance is compared against an advanced controller and the fixed-bottom version of the same turbine, indicating clearly the different challenges of floating wind control and possible remedies.
引用
收藏
页码:17 / 30
页数:14
相关论文
共 50 条
  • [31] Review of control technologies for floating offshore wind turbines
    Lopez-Queija, Javier
    Robles, Eider
    Jugo, Josu
    Alonso-Quesada, Santiago
    RENEWABLE & SUSTAINABLE ENERGY REVIEWS, 2022, 167
  • [32] Optimization of Mooring Systems for Floating Offshore Wind Turbines
    Benassai, Guido
    Campanile, Antonio
    Piscopo, Vincenzo
    Scamardella, Antonio
    COASTAL ENGINEERING JOURNAL, 2015, 57 (04)
  • [33] Experimental Research for Stabilizing Offshore Floating Wind Turbines
    Yang, Wenxian
    Tian, Wenye
    Hvalbye, Ole
    Peng, Zhike
    Wei, Kexiang
    Tian, Xinliang
    ENERGIES, 2019, 12 (10)
  • [34] Fault Tree Analysis of floating offshore wind turbines
    Kang, Jichuan
    Sun, Liping
    Guedes Soares, C.
    RENEWABLE ENERGY, 2019, 133 : 1455 - 1467
  • [35] EXTREME LOAD PREDICTIONS FOR FLOATING OFFSHORE WIND TURBINES
    Jensen, Jorgen Juncher
    OMAE 2009, VOL 4, PTS A AND B, 2009, : 833 - 838
  • [36] HYBRID MODEL TESTS FOR FLOATING OFFSHORE WIND TURBINES
    Thys, Maxime
    Fontanella, Alessandro
    Taruffi, Federico
    Belloli, Marco
    Berthelsen, Petter Andreas
    PROCEEDINGS OF THE ASME 2ND INTERNATIONAL OFFSHORE WIND TECHNICAL CONFERENCE, 2019, 2020,
  • [37] Study on Gyroscopic Effect of Floating Offshore Wind Turbines
    CHEN Jia-hao
    PEI Ai-guo
    CHEN Peng
    HU Zhi-qiang
    ChinaOceanEngineering, 2021, 35 (02) : 201 - 214
  • [38] A hybrid methodology for wind tunnel testing of floating offshore wind turbines
    Belloli, M.
    Bayati, I
    Facchinetti, A.
    Fontanella, A.
    Giberti, H.
    La Mura, F.
    Taruffi, F.
    Zasso, A.
    OCEAN ENGINEERING, 2020, 210
  • [39] METHODOLOGY FOR WIND/WAVE BASIN TESTING OF FLOATING OFFSHORE WIND TURBINES
    Martin, Heather R.
    Kimball, Richard W.
    Viselli, Anthony M.
    Goupee, Andrew J.
    PROCEEDINGS OF THE ASME 31ST INTERNATIONAL CONFERENCE ON OCEAN, OFFSHORE AND ARTIC ENGINEERING, VOL 7, 2013, : 445 - 454
  • [40] Wind spectral characteristics on strength design of floating offshore wind turbines
    Udoh, Ikpoto E.
    Zou, Jun
    OCEAN SYSTEMS ENGINEERING-AN INTERNATIONAL JOURNAL, 2018, 8 (03): : 281 - 312