CONVEX FLOATING BODIES AS APPROXIMATIONS OF BERGMAN SUBLEVEL SETS ON TUBE DOMAINS

被引:0
作者
Gupta, Purvi [1 ]
机构
[1] Univ Western Ontario, Dept Math, London, ON N6A 5B7, Canada
关键词
Tube domains; floating body; equiaffine invariant measures; BODY; KERNEL;
D O I
10.1090/proc/13573
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
For a pseudoconvex tube domain, we prove estimates that relate the sublevel sets of its diagonal Bergman kernel to the floating bodies of its convex base. This allows us to associate a new affine invariant to any convex body.
引用
收藏
页码:4385 / 4396
页数:12
相关论文
共 16 条
[1]  
Ball K., 1997, Flavors of geometry, V31, P26
[2]   A Lower Bound for the Bergman Kernel and the Bourgain-Milman Inequality [J].
Blocki, Zbigniew .
GEOMETRIC ASPECTS OF FUNCTIONAL ANALYSIS: ISRAEL SEMINAR (GAFA) 2011-2013, 2014, 2116 :53-63
[3]  
Fi SQ, 2001, P AM MATH SOC, V129, P1769
[4]   The floating body and the hyperplane conjecture [J].
Fresen, Daniel .
ARCHIV DER MATHEMATIK, 2012, 98 (04) :389-397
[5]   Lower-dimensional Fefferman measures via the Bergman kernel [J].
Gupta, Purvi .
ANALYSIS AND GEOMETRY IN SEVERAL COMPLEX VARIABLES, 2017, 681 :137-151
[6]  
Hormander L., 1965, Acta Math., V113, P89, DOI 10.1007/BF02391775
[7]  
John F., 1948, STUDIES ESSAYS PRESE, P187
[8]   The Hormander Proof of the Bourgain-Milman Theorem [J].
Nazarov, Fedor .
GEOMETRIC ASPECTS OF FUNCTIONAL ANALYSIS: ISRAEL SEMINAR 2006-2010, 2012, 2050 :335-343
[9]   BOUNDARY-BEHAVIOR OF THE BERGMAN-KERNEL FUNCTION ON PSEUDOCONVEX DOMAINS [J].
OHSAWA, T .
PUBLICATIONS OF THE RESEARCH INSTITUTE FOR MATHEMATICAL SCIENCES, 1984, 20 (05) :897-902
[10]   FOURIER-LAPLACE TRANSFORMS AND THE BERGMAN SPACES [J].
SAITOH, S .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1988, 102 (04) :985-992