Preparation of metal organic framework derived materials CoFe2O4@NC and its application for degradation of norfloxacin from aqueous solutions by activated peroxymonosulfate

被引:35
作者
Fan, Yan [1 ]
Liu, Yanru [1 ]
Hu, Xiang [1 ]
Sun, Zhirong [2 ]
机构
[1] Beijing Univ Chem Technol, Coll Chem Engn, Beijing 100029, Peoples R China
[2] Beijing Univ Technol, Coll Environm & Energy Engn, Beijing 100124, Peoples R China
基金
中国国家自然科学基金;
关键词
Metal organic framework; Peroxomonosulfate; Norfloxacin; Radical; Oxidative degradation; Water treatment; WATER TREATMENT PLANTS; EFFICIENT DEGRADATION; ADVANCED OXIDATION; WASTE-WATER; HETEROGENEOUS ACTIVATION; CATALYTIC DEGRADATION; ENHANCED DEGRADATION; POROUS CARBON; PERSULFATE; KINETICS;
D O I
10.1016/j.chemosphere.2021.130059
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
The metal organic framework derived materials (CoFe2O4@NC) activated peroxymonosulfate (PMS) to degrade Norfloxacin (NOR) owing to the characteristics of high surface area (109.658 m(2) g(-1)) and abundant mesoporous structure. The characterization results demonstrated that the optimal ratio of bimetal and of bimetallic to organic ligands (M/O) had good crystal structure and stability (Fe/Co = 3:1, M/O = 2:1). Moreover, NOR (10 mg L-1) removal of 98.78% was achievable in 60 min with an optimum concentration of PMS (0.32 mM) and dosage of CoFe2O4@NC (0.1 g L-1). The radical quenching results suggested that SO4 center dot(-), center dot OH and O-1(2) functioned in the presence of the system certificated by XPS spectra. The presence of Cl- and CO32-/HCO3- promoted the catalyst reaction. The recoverability revealed high removal efficiency of NOR of 93.55% could still be maintained. Furthermore, four pathways of NOR degradation were proposed, including dehydroxylation, defluorination, quinolone group conversion and piperazine ring transformation, which were attributed to the synergy of reactive oxygen species. The above results highlight that the method is of great significance to the practical application of heterogeneous catalysts in aqueous solutions. (C) 2021 Elsevier Ltd. All rights reserved.
引用
收藏
页数:12
相关论文
共 64 条
[1]   Occurrence, removal and risk of organic micropollutants in wastewater treatment plants across China: Comparison of wastewater treatment processes [J].
Ben, Weiwei ;
Zhu, Bing ;
Yuan, Xiangjuan ;
Zhang, Yu ;
Yang, Min ;
Qiang, Zhimin .
WATER RESEARCH, 2018, 130 :38-46
[2]   Ultrasound enhanced heterogeneous activation of peroxymonosulfate by a bimetallic Fe-Co/SBA-15 catalyst for the degradation of Orange II in water [J].
Cai, Chun ;
Zhang, Hui ;
Zhong, Xing ;
Hou, Liwei .
JOURNAL OF HAZARDOUS MATERIALS, 2015, 283 :70-79
[3]   Degradation of atrazine by cobalt-mediated activation of peroxymonosulfate: Different cobalt counteranions in homogenous process and cobalt oxide catalysts in photolytic heterogeneous process [J].
Chan, K. H. ;
Chu, W. .
WATER RESEARCH, 2009, 43 (09) :2513-2521
[4]   Cation distribution and particle size effect on Raman spectrum of CoFe2O4 [J].
Chandramohan, P. ;
Srinivasan, M. P. ;
Velmurugan, S. ;
Narasimhan, S. V. .
JOURNAL OF SOLID STATE CHEMISTRY, 2011, 184 (01) :89-96
[5]   Occurrence and behavior of antibiotics in water and sediments from the Huangpu River, Shanghai, China [J].
Chen, K. ;
Zhou, J. L. .
CHEMOSPHERE, 2014, 95 :604-612
[6]   Rational design and synthesis of hollow Co3O4@Fe2O3 core-shell nanostructure for the catalytic degradation of norfloxacin by coupling with peroxymonosulfate [J].
Chen, Liwei ;
Zuo, Xu ;
Yang, Shengjiong ;
Cai, Tianming ;
Ding, Dahu .
CHEMICAL ENGINEERING JOURNAL, 2019, 359 :373-384
[7]   Efficient heterogeneous activation of peroxymonosulfate by facilely prepared Co/Fe bimetallic oxides: Kinetics and mechanism [J].
Chen, Liwei ;
Zuo, Xu ;
Zhou, Liang ;
Huang, Yang ;
Yang, Shengjiong ;
Cai, Tianming ;
Ding, Dahu .
CHEMICAL ENGINEERING JOURNAL, 2018, 345 :364-374
[8]   Degradation of norfloxacin by CoFe2O4-GO composite coupled with peroxymonosulfate: A comparative study and mechanistic consideration [J].
Chen, Liwei ;
Ding, Dahu ;
Liu, Chao ;
Cai, Hao ;
Qu, Ying ;
Yang, Shengjiong ;
Gao, Yu ;
Cai, Tianming .
CHEMICAL ENGINEERING JOURNAL, 2018, 334 :273-284
[9]   Photocatalytic degradation and decomposition mechanism of fluoroquinolones norfloxacin over bismuth tungstate: Experiment and mathematic model [J].
Chen, Meijuan ;
Chu, W. .
APPLIED CATALYSIS B-ENVIRONMENTAL, 2015, 168 :175-182
[10]   Atomic Fe Dispersed on N-Doped Carbon Hollow Nanospheres for High-Efficiency Electrocatalytic Oxygen Reduction [J].
Chen, Yifan ;
Li, Zhijuan ;
Zhu, Yanbo ;
Sun, Dongmei ;
Liu, Xien ;
Xu, Lin ;
Tang, Yawen .
ADVANCED MATERIALS, 2019, 31 (08)