Phase control in immiscible Zn-Bi alloy by tungsten nanoparticles

被引:27
作者
Cao, Chezheng [1 ]
Chen, Lianyi [2 ,3 ]
Xu, Jiaquan [1 ]
Zhao, Jingzhou [2 ]
Pozuelo, Marta [1 ]
Li, Xiaochun [1 ,2 ]
机构
[1] Univ Calif Los Angeles, Dept Mat Sci & Engn, Los Angeles, CA 90095 USA
[2] Univ Calif Los Angeles, Dept Mech & Aerosp Engn, Los Angeles, CA 90095 USA
[3] Missouri Univ Sci & Technol, Dept Mech & Aerosp Engn, Rolla, MO 65409 USA
基金
美国国家科学基金会;
关键词
Zn-Bi immiscible alloy; Tungsten nanoparticles; Nanocomposites; Phase control;
D O I
10.1016/j.matlet.2016.03.105
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Immiscible Zn-Bi alloy has a good potential to replace lead-based alloys to serve as a running layer in plain bearings. However, it is still a major challenge to uniformly disperse Bi phase in Zn matrix during solidification processing since Bi droplets grow very fast in liquid state and readily coagulate to induce phase sedimentation. In this study, tungsten (W) nanoparticles were, for the first time, used and effectively incorporated into the Zn-Bi melt for phase control. Tungsten nanoparticles were able to self-assemble onto the Zn-Bi phase interfaces to slow down the growth of the Bi phase and prevent their coagulations, resulting in a significant size reduction of the Bi phase and microstructure refinement. Moreover, the incorporation of W nanoparticles into the Zn-Bi alloy enhanced its microhardness significantly. This new approach of using chemically-stable metal nanoparticles has a great potential for scale-up manufacturing of immiscible alloys for widespread applications. (C) 2016 Elsevier B.V. All rights reserved.
引用
收藏
页码:213 / 216
页数:4
相关论文
共 15 条
[1]  
[Anonymous], 1980, METALL T A
[2]   Strengthening Al-Bi-TiC0.7N0.3 nanocomposites by Cu addition and grain refinement [J].
Cao, Chezheng ;
Chen, Lianyi ;
Xu, Jiaquan ;
Choi, Hongseok ;
Li, Xiaochun .
MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING, 2016, 651 :332-335
[3]   Controlling Phase Growth During Solidification by Nanoparticles [J].
Chen, Lian-Yi ;
Xu, Jia-Quan ;
Li, Xiao-Chun .
MATERIALS RESEARCH LETTERS, 2015, 3 (01) :43-49
[4]   Rapid control of phase growth by nanoparticles [J].
Chen, Lian-Yi ;
Xu, Jia-Quan ;
Choi, Hongseok ;
Konishi, Hiromi ;
Jin, Song ;
Li, Xiao-Chun .
NATURE COMMUNICATIONS, 2014, 5
[5]   Semi-solid casting (SSC) of zinc alloy nanocomposites [J].
De Cicco, Michael P. ;
Li, Xiaochun ;
Turng, Lih-Sheng .
JOURNAL OF MATERIALS PROCESSING TECHNOLOGY, 2009, 209 (18-19) :5881-5885
[6]   The Electrodeposition of Zinc-Bismuth Alloys [J].
Gollas, B. ;
Luegger, A. ;
Zidar, J. .
ELECTRODEPOSITION FUNDAMENTALS AND NEW MATERIALS (GENERAL) - 222ND ECS MEETING/PRIME 2012: DIETER M. KOLB MEMORIAL SYMPOSIUM, 2013, 50 (52) :123-133
[7]   Thermodynamic assessment of the Bi-Zn system [J].
Malakhov, DV .
CALPHAD-COMPUTER COUPLING OF PHASE DIAGRAMS AND THERMOCHEMISTRY, 2000, 24 (01) :1-14
[8]  
Miba Gleitlager GmbH and KS Gleitlager GmbH, 2008, Patent, Patent No. 504220
[9]   LIQUID IMMISCIBLE ALLOYS [J].
RATKE, L ;
DIEFENBACH, S .
MATERIALS SCIENCE & ENGINEERING R-REPORTS, 1995, 15 (7-8) :263-347
[10]   Wetting transition of grain-boundary triple junctions [J].
Straumal, B. B. ;
Kogtenkova, O. ;
Zieba, P. .
ACTA MATERIALIA, 2008, 56 (05) :925-933