EXACT TRAVELING-WAVE SOLUTION FOR LOCAL FRACTIONAL BOUSSINESQ EQUATION IN FRACTAL DOMAIN

被引:179
作者
Yang, Xiao-Jun [1 ]
Tenreiro Machado, J. A. [2 ]
Baleanu, Dumitru [3 ,4 ]
机构
[1] China Univ Min & Technol, Sch Mech & Civil Engn, State Key Lab Geomech & Deep Underground Engn, Xuzhou 221116, Peoples R China
[2] Polytech Porto, Inst Engn, Dept Elect Engn, Rua Dr Antonio Bernardino de Almeida, P-4249015 Oporto, Portugal
[3] Cankya Univ, Dept Math, Ogretmenler Cad 14, TR-06530 Ankara, Turkey
[4] Inst Space Sci, Magurele, Romania
关键词
Exact Traveling-Wave Solution; Local Fractional Boussinesq Equation; Local Fractional Derivative; Fractals; CALCULUS; DERIVATIVES;
D O I
10.1142/S0218348X17400060
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The new Boussinesq-type model in a fractal domain is derived based on the formulation of the local fractional derivative. The novel traveling wave transform of the non-differentiable type is adopted to convert the local fractional Boussinesq equation into a nonlinear local fractional ODE. The exact traveling wave solution is also obtained with aid of the non-differentiable graph. The proposed method, involving the fractal special functions, is efficient for finding the exact solutions of the nonlinear PDEs in fractal domains.
引用
收藏
页数:7
相关论文
共 30 条
[1]   On calculus of local fractional derivatives [J].
Babakhani, A ;
Daftardar-Gejji, V .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2002, 270 (01) :66-79
[2]   Electrostatics in fractal geometry: Fractional calculus approach [J].
Baskin, Emmanuel ;
Iomin, Alexander .
CHAOS SOLITONS & FRACTALS, 2011, 44 (4-5) :335-341
[3]   About non-differentiable functions [J].
Ben Adda, F ;
Cresson, J .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2001, 263 (02) :721-737
[4]   GENERALIZED OSTROWSKI TYPE INEQUALITIES FOR FUNCTIONS WHOSE LOCAL FRACTIONAL DERIVATIVES ARE GENERALIZED s-CONVEX IN THE SECOND SENSE [J].
Budak, Huseyin ;
Sarikaya, Mehmet Zeki ;
Set, Erhan .
JOURNAL OF APPLIED MATHEMATICS AND COMPUTATIONAL MECHANICS, 2016, 15 (04) :11-21
[5]   Calculation of the tensile and flexural strength of disordered materials using fractional calculus [J].
Carpinteri, A ;
Cornetti, P ;
Kolwankar, KM .
CHAOS SOLITONS & FRACTALS, 2004, 21 (03) :623-632
[6]   A fractional calculus approach to the description of stress and strain localization in fractal media [J].
Carpinteri, A ;
Cornetti, P .
CHAOS SOLITONS & FRACTALS, 2002, 13 (01) :85-94
[7]   On the local fractional derivative [J].
Chen, Yan ;
Yan, Ying ;
Zhang, Kewei .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2010, 362 (01) :17-33
[8]   Differential trajectory tracking with automatic learning of background reconstruction [J].
Fu, Weina ;
Zhou, Jiantao ;
Liu, Shuai ;
Ma, Ming ;
Ma, Yingdong .
MULTIMEDIA TOOLS AND APPLICATIONS, 2016, 75 (21) :13001-13013
[9]   On the Approximate Solutions of Local Fractional Differential Equations with Local Fractional Operators [J].
Jafari, Hossein ;
Jassim, Hassan Kamil ;
Tchier, Fairouz ;
Baleanu, Dumitru .
ENTROPY, 2016, 18 (04)
[10]   A DECOMPOSITION METHOD FOR SOLVING DIFFUSION EQUATIONS VIA LOCAL FRACTIONAL TIME DERIVATIVE [J].
Jafari, Hossein ;
Tajadodi, Haleh ;
Johnston, Sarah Jane .
THERMAL SCIENCE, 2015, 19 :S123-S129