PERIODIC SOLUTIONS TO NONLINEAR EULER-BERNOULLI BEAM EQUATIONS

被引:8
作者
Chen, Bochao [1 ]
Gao, Yixian [2 ]
Li, Yong [2 ,3 ]
机构
[1] Jilin Univ, Coll Math, Changchun 130012, Jilin, Peoples R China
[2] Northeast Normal Univ, Ctr Math & Interdisciplinary Sci, Sch Math & Stat, Changchun 130024, Jilin, Peoples R China
[3] Jilin Univ, Coll Math, Changchun 130024, Jilin, Peoples R China
基金
中国博士后科学基金;
关键词
Euler-Bernoulli beam equations; Variable coefficients; Periodic solutions; Nash-Moser iteration; DIMENSIONAL WAVE-EQUATION; COMPACT LIE-GROUPS; SCHRODINGER-EQUATIONS; KAM;
D O I
10.4310/CMS.2019.v17.n7.a10
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Bending vibrations of thin beams and plates can be described by nonlinear Euler-Bernoulli beam equation with x-dependent coefficients. In this paper we demonstrate the existence of families of time-periodic solutions to such a model by virtue of a Lyapunov-Schmidt reduction together with a Nash-Moser method. This result holds for all parameters (epsilon,omega) in a Cantor set with asymptotically full measure as epsilon -> 0.
引用
收藏
页码:2005 / 2034
页数:30
相关论文
共 40 条
[1]   Resonances for Euler-Bernoulli operator on the half-line [J].
Badanin, Andrey ;
Korotyaev, Evgeny L. .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2017, 263 (01) :534-566
[2]   Inverse problems and sharp eigenvalue asymptotics for Euler-Bernoulli operators [J].
Badanin, Andrey ;
Korotyaev, Evgeny .
INVERSE PROBLEMS, 2015, 31 (05)
[3]   Forced vibrations of a nonhomogeneous string [J].
Baldi, Pietro ;
Berti, Massimiliano .
SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 2008, 40 (01) :382-412
[4]   Periodic solutions to one-dimensional wave equation with piece-wise constant coefficients [J].
Barbu, V ;
Pavel, NH .
JOURNAL OF DIFFERENTIAL EQUATIONS, 1996, 132 (02) :319-337
[5]   Periodic solutions to nonlinear one dimensional wave equation with X-dependent coefficients [J].
Barbu, V ;
Pavel, NH .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1997, 349 (05) :2035-2048
[6]   An abstract Nash-Moser theorem with parameters and applications to PDEs [J].
Berti, M. ;
Bolle, P. ;
Procesi, M. .
ANNALES DE L INSTITUT HENRI POINCARE-ANALYSE NON LINEAIRE, 2010, 27 (01) :377-399
[7]   Cantor families of periodic solutions of wave equations with Ck nonlinearities [J].
Berti, Massimiliano ;
Bolle, Philippe .
NODEA-NONLINEAR DIFFERENTIAL EQUATIONS AND APPLICATIONS, 2008, 15 (1-2) :247-276
[8]   An Abstract Nash-Moser Theorem and Quasi-Periodic Solutions for NLW and NLS on Compact Lie Groups and Homogeneous Manifolds [J].
Berti, Massimiliano ;
Corsi, Livia ;
Procesi, Michela .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2015, 334 (03) :1413-1454
[9]   KAM for Reversible Derivative Wave Equations [J].
Berti, Massimiliano ;
Biasco, Luca ;
Procesi, Michela .
ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 2014, 212 (03) :905-955
[10]   NONLINEAR WAVE AND SCHRODINGER EQUATIONS ON COMPACT LIE GROUPS AND HOMOGENEOUS SPACES [J].
Berti, Massimiliano ;
Procesi, Michela .
DUKE MATHEMATICAL JOURNAL, 2011, 159 (03) :479-538