Spectral methods for the time fractional diffusion-wave equation in a semi-infinite channel

被引:30
作者
Chen, Hu [1 ]
Lu, Shujuan [1 ]
Chen, Wenping [1 ]
机构
[1] Beihang Univ, Sch Math & Syst Sci, Beijing 100191, Peoples R China
关键词
Fractional diffusion-wave equation; Fully discrete spectral method; Alternating direction implicit method; Semi-infinite channel; Error analysis; FINITE-DIFFERENCE APPROXIMATIONS; DISCONTINUOUS GALERKIN METHOD; ELEMENT-METHOD; CALCULUS; SPACE; SCHEME;
D O I
10.1016/j.camwa.2016.02.024
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we consider the numerical approximation of the time fractional diffusion-wave equation in a semi-infinite channel. The time fractional derivative is described in Caputo sense with order gamma (1 < gamma < 2). A fully discrete spectral scheme based on a finite difference method in the time direction and a Laguerre-Legendre spectral method in the space direction is proposed. We also propose an alternating direction implicit (ADI) spectral scheme in order to reduce the amount of computation. The stability and convergence of both schemes are rigorously established. Numerical results are presented to support our theoretical analysis. (C) 2016 Elsevier Ltd. All rights reserved.
引用
收藏
页码:1818 / 1830
页数:13
相关论文
共 34 条
[1]  
Ben-Yu G, 2000, MATH METHOD APPL SCI, V23, P1617, DOI 10.1002/1099-1476(200012)23:18<1617::AID-MMA176>3.0.CO
[2]  
2-9
[3]   Artificial boundary conditions and finite difference approximations for a time-fractional diffusion-wave equation on a two-dimensional unbounded spatial domain [J].
Brunner, Hermann ;
Han, Houde ;
Yin, Dongsheng .
JOURNAL OF COMPUTATIONAL PHYSICS, 2014, 276 :541-562
[4]  
Canuto C., 2006, SCIENTIF COMPUT, DOI 10.1007/978-3-540-30726-6
[5]   A multi-domain spectral method for time-fractional differential equations [J].
Chen, Feng ;
Xu, Qinwu ;
Hesthaven, Jan S. .
JOURNAL OF COMPUTATIONAL PHYSICS, 2015, 293 :157-172
[6]   Numerical simulation for the three-dimension fractional sub-diffusion equation [J].
Chen, J. ;
Liu, F. ;
Liu, Q. ;
Chen, X. ;
Anh, V. ;
Turner, I. ;
Burrage, K. .
APPLIED MATHEMATICAL MODELLING, 2014, 38 (15-16) :3695-3705
[7]   Image structure preserving denoising using generalized fractional time integrals [J].
Cuesta, Eduardo ;
Kirane, Mokhtar ;
Malik, Salman A. .
SIGNAL PROCESSING, 2012, 92 (02) :553-563
[8]   FINITE ELEMENT METHOD FOR THE SPACE AND TIME FRACTIONAL FOKKER-PLANCK EQUATION [J].
Deng, Weihua .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 2008, 47 (01) :204-226
[9]   Analysis of Fractional Differential Equations: An Application-Oriented Exposition Using Differential Operators of Caputo Type [J].
Diethelm, Kai .
ANALYSIS OF FRACTIONAL DIFFERENTIAL EQUATIONS: AN APPLICATION-ORIENTED EXPOSITION USING DIFFERENTIAL OPERATORS OF CAPUTO TYPE, 2010, 2004 :3-+
[10]   Numerical approximation of a time dependent, nonlinear, space-fractional diffusion equation [J].
Ervin, Vincent J. ;
Heuer, Norbert ;
Roop, John Paul .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 2007, 45 (02) :572-591