Complete lifts of connections and stochastic Jacobi fields

被引:20
作者
Arnaudon, M
Thalmaier, A
机构
[1] Univ Strasbourg 1, Inst Rech Math Avancee, F-67084 Strasbourg, France
[2] CNRS, F-67084 Strasbourg, France
[3] Univ Bonn, Inst Angew Math, D-53115 Bonn, Germany
来源
JOURNAL DE MATHEMATIQUES PURES ET APPLIQUEES | 1998年 / 77卷 / 03期
关键词
D O I
10.1016/S0021-7824(98)80071-8
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Differentiable families of del-martingales on manifolds are investigated: their infinitesimal variation provides a notion of stochastic Jacobi fields. Such objects are known [2] to be martingales taking values in the tangent bundle when the latter is equipped with the complete lift of the connection del. We discuss various characterizations of TM-valued martingales. When applied to specific families of del-martingales which appear in connection with the heat how for maps between Riemannian manifolds, our results allow to establish formulas giving a stochastic representation for the differential of solutions to the nonlinear heat equation. As an application, we prove local and global gradient estimates for harmonic maps of bounded dilatation. (C) Elsevier, Paris.
引用
收藏
页码:283 / 315
页数:33
相关论文
共 31 条
[1]  
[Anonymous], 1993, S MIN PROBAB STRAS
[2]  
[Anonymous], 1982, LECT NOTES MATH
[3]  
ARNAUDON M, 1992, LECT NOTES MATH, V1526, P146
[4]  
ARNAUDON M, IN PRESS SEMINAIRE P
[5]  
Bismut J. M., 1981, LECT NOTES MATH, V866
[6]  
Cordero L., 1989, DIFFERENTIAL GEOMETR
[7]   Renormalized differential geometry on path space: Structural equation, curvature [J].
Cruzeiro, AB ;
Malliavin, P .
JOURNAL OF FUNCTIONAL ANALYSIS, 1996, 139 (01) :119-181
[8]   NELSON STOCHASTIC MECHANICS ON RIEMANNIAN MANIFOLDS [J].
DOHRN, D ;
GUERRA, F .
LETTERE AL NUOVO CIMENTO, 1978, 22 (04) :121-127
[10]  
ELWORTHY KD, 1997, NEW TRENDS STOCHASTI