Creep characterization of solder bumps using nanoindentation

被引:4
作者
Du, Yingjie [1 ]
Liu, Xiao Hu [2 ]
Fu, Boshen [3 ]
Shaw, Thomas M. [2 ]
Lu, Minhua [2 ]
Wassick, Thomas A. [2 ]
Bonilla, Griselda [2 ]
Lu, Hongbing [1 ]
机构
[1] Univ Texas Dallas, Dept Mech Engn, Richardson, TX 75080 USA
[2] IBM TJ Watson Res Ctr, 1101 Kitchawan Rd, Yorktown Hts, NY 10598 USA
[3] Oklahoma State Univ, Sch Mech & Aerosp Engn, Stillwater, OK 74074 USA
关键词
Nanoindentation; Creep exponent; Activation energy; Solder bump; Finite element analysis; POWER-LAW CREEP; LEAD-FREE SOLDERS; INDENTATION; SN; PB;
D O I
10.1007/s11043-016-9330-z
中图分类号
O3 [力学];
学科分类号
08 ; 0801 ;
摘要
Current nanoindentation techniques for the measurement of creep properties are applicable to viscoplastic materials with negligible elastic deformations. A new technique for characterization of creep behavior is needed for situations where the elastic deformation plays a significant role. In this paper, the effect of elastic deformation on the determination of creep parameters using nanoindentation with a self-similar nanoindenter tip is evaluated using finite element analysis (FEA). It is found that the creep exponent measured from nanoindentation without taking into account of the contribution of elastic deformation tends to be higher than the actual value. An effective correction method is developed to consider the elastic deformation in the calculation of creep parameters. FEA shows that this method provides accurate creep exponent. The creep parameters, namely the creep exponent and activation energy, were measured for three types of reflowed solder bumps using the nanoindentation method. The measured parameters were verified using FEA. The results show that the new correction approach allows extraction of creep parameters with precision from nanoindentation data.
引用
收藏
页码:287 / 305
页数:19
相关论文
共 15 条
  • [1] Lead-free solders in microelectronics
    Abtew, M
    Selvaduray, G
    [J]. MATERIALS SCIENCE & ENGINEERING R-REPORTS, 2000, 27 (5-6) : 95 - 141
  • [2] On the elastic effects in power-law indentation creep with sharp conical indenters
    Alkorta, Jon
    Martinez-Esnaola, Jos Manuel
    Sevillano, Javier Gil
    [J]. JOURNAL OF MATERIALS RESEARCH, 2008, 23 (01) : 182 - 188
  • [3] INDENTATION OF A POWER LAW CREEPING SOLID
    BOWER, AF
    FLECK, NA
    NEEDLEMAN, A
    OGBONNA, N
    [J]. PROCEEDINGS OF THE ROYAL SOCIETY-MATHEMATICAL AND PHYSICAL SCIENCES, 1993, 441 (1911): : 97 - 124
  • [4] Scaling relationships in indentation of power-law creep solids using self-similar indenters
    Cheng, YT
    [J]. PHILOSOPHICAL MAGAZINE LETTERS, 2001, 81 (01) : 9 - 16
  • [5] Dorn JE., 1961, Mechanical behavior of materials at elevated temperatures
  • [6] Indentation creep of β-Sn and Sn-Pb eutectic alloy
    Fujiwara, M
    Otsuka, M
    [J]. MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING, 2001, 319 : 929 - 933
  • [7] Measurement of creep compliance of solid polymers by nanoindentation
    Lu, H
    Wang, B
    Ma, J
    Huang, G
    Viswanathan, H
    [J]. MECHANICS OF TIME-DEPENDENT MATERIALS, 2003, 7 (3-4) : 189 - 207
  • [8] Indentation power-law creep of high-purity indium
    Lucas, BN
    Oliver, WC
    [J]. METALLURGICAL AND MATERIALS TRANSACTIONS A-PHYSICAL METALLURGY AND MATERIALS SCIENCE, 1999, 30 (03): : 601 - 610
  • [9] A MICRO-INDENTATION STUDY OF SUPERPLASTICITY IN PB, SN, AND SN-38 WT-PERCENT-PB
    MAYO, MJ
    NIX, WD
    [J]. ACTA METALLURGICA, 1988, 36 (08): : 2183 - 2192
  • [10] Nanoindentation Creep Behavior of Nanocomposite Sn-Ag-Cu Solders
    Roshanghias, A.
    Kokabi, A. H.
    Miyashita, Y.
    Mutoh, Y.
    Ihara, I.
    Fatt, R. G. Guan
    Madaah-Hosseini, H. R.
    [J]. JOURNAL OF ELECTRONIC MATERIALS, 2012, 41 (08) : 2057 - 2064