Finite-size instabilities in finite-range forces

被引:5
|
作者
Gonzalez-Boquera, C. [1 ,2 ]
Centelles, M. [1 ,2 ]
Vinas, X. [1 ,2 ]
Robledo, L. M. [3 ,4 ,5 ]
机构
[1] Univ Barcelona, Fac Fis, Dept Fis Quant & Astrofis, Marti i Franques 1, E-08028 Barcelona, Spain
[2] Univ Barcelona, Fac Fis, Inst Ciencies Cosmos ICCUB, Marti i Franques 1, E-08028 Barcelona, Spain
[3] Univ Autonoma Madrid, Dept Fis Teor, E-28049 Madrid, Spain
[4] Univ Autonoma Madrid, CIAFF, E-28049 Madrid, Spain
[5] Univ Politecn Madrid, Ctr Computat Simulat, Campus Montegancedo, E-28660 Madrid, Spain
关键词
NUCLEAR; APPROXIMATION;
D O I
10.1103/PhysRevC.103.064314
中图分类号
O57 [原子核物理学、高能物理学];
学科分类号
070202 ;
摘要
It has been recently shown that some Gogny finite-range interactions suffer from finite-size instabilities in coordinate-space calculations [Eur. Phys. J. A 55, 150 (2019)]. We confirm this finding by using the Hartree-Fock (HF) method in the quasilocal approximation to finite-range forces. The use of the quasilocal approximation substantially simplifies the calculations as compared with those including the exact exchange contribution to the energy and HF fields. The quantity most affected by the finite-size instabilities in the coordinate-space calculations is the spatial density at the origin that wildly oscillates as the HF iterative process proceeds. In addition to the recent D1M* parametrization of the Gogny force, we find that the D1M parametrization also shows this deficiency in several nuclei. We find that the harmonic-oscillator basis with its ultraviolet cutoff provides converged results in a wide and realistic range of basis sizes. This result serves as a justification of the numerous calculations with D1M and D1M* in finite nuclei that show no trace of instability.
引用
收藏
页数:7
相关论文
共 50 条
  • [1] THERMODYNAMIC INSTABILITIES OF NUCLEAR-MATTER AT FINITE TEMPERATURE WITH FINITE-RANGE EFFECTIVE INTERACTIONS
    VENTURA, J
    POLLS, A
    VINAS, X
    HERNANDEZ, S
    PI, M
    NUCLEAR PHYSICS A, 1992, 545 (1-2) : C247 - C258
  • [2] Finite-Size Instabilities in Nuclear Energy Density Functionals
    Hellemans, V.
    Heenen, P. -H.
    Bender, M.
    NUCLEAR STRUCTURE AND DYNAMICS '12, 2012, 1491 : 242 - 245
  • [3] FINITE-RANGE GRAVITATION
    FREUND, PGO
    MAHESHWARI, A
    SCHONBERG, E
    ASTROPHYSICAL JOURNAL, 1969, 157 (2P1): : 857 - +
  • [4] Finite-Range Decomposition
    Bauerschmidt, Roland
    Brydges, David C.
    Slade, Gordon
    INTRODUCTION TO A RENORMALISATION GROUP METHOD, 2019, 2242 : 37 - 52
  • [5] FINITE-RANGE GRAVITATION
    DATTA, B
    RANA, NC
    PHYSICS LETTERS B, 1979, 88 (3-4) : 392 - 394
  • [6] 3-PARTICLE DYNAMICS IN THE CASE OF FINITE-RANGE FORCES
    KHARCHENKO, VF
    KUZMICHEV, VE
    NAVROTSKY, MA
    ZEITSCHRIFT FUR PHYSIK A-HADRONS AND NUCLEI, 1982, 304 (04): : 343 - 345
  • [7] Finite-size correlation length and violations of finite-size scaling
    Caracciolo, S
    Gambassi, A
    Gubinelli, M
    Pelissetto, A
    EUROPEAN PHYSICAL JOURNAL B, 2001, 20 (02): : 255 - 265
  • [8] Finite-size correlation length and violations of finite-size scaling
    S. Caracciolo
    A. Gambassi
    M. Gubinelli
    A. Pelissetto
    The European Physical Journal B - Condensed Matter and Complex Systems, 2001, 20 (2): : 255 - 265
  • [9] Spurious finite-size instabilities with Gogny-type interactions
    Martini, M.
    De Pace, A.
    Bennaceur, K.
    EUROPEAN PHYSICAL JOURNAL A, 2019, 55 (09):
  • [10] Spurious finite-size instabilities in nuclear energy density functionals
    Hellemans, V.
    Pastore, A.
    Duguet, T.
    Bennaceur, K.
    Davesne, D.
    Meyer, J.
    Bender, M.
    Heenen, P. -H.
    PHYSICAL REVIEW C, 2013, 88 (06):